|

Metal Liner Reliability Assessment for BREST-OD-300 Reactor Vessel Accounting for Brittle Fracture and Leaks

Authors: Solonin V.I., Terekhin A.N., Shiverskiy E.A. Published: 17.10.2019
Published in issue: #5(128)/2019  

DOI: 10.18698/0236-3941-2019-5-119-134

 
Category: Power Engineering | Chapter: Nuclear Power Plants, Fuel Cycle, Radiation Safety  
Keywords: multi-layer metal-concrete vessel, metal liner, vessel reliability, probabilistic mechanical model-ing, brittle fracture and leak

Multi-layer metal-concrete vessel of BREST-OD-300 reactor comprising metal liner that covers internal cavities and ducts has an original design with no known analogues. Due to this, statistical reliability assessment methods, based on operating or testing experience, are not applicable in this case. We propose a method to assess the reliability of the reactor vessel liner taking into account a random nature of loads and mechanical properties affecting brittle rupture and leakage probability. The assessment is based on numerical simulation of postulated defects growth, allowance for the probability of their omission in the control process, and calculation of strength characteristics during operation using finite element models. In our research we took into account such factors as lead coolant and vessel internal component loads, high temperatures and irradiation, low cycle loads. The results of method application revealed the most vulnerable areas of the liner. In addition, findings of research show a high level of reliability of the metal liner of BREST-OD-300 reactor vessel, due to low probabilities of brittle fracture and leaks

References

[1] Dimitrienko Yu.I., Yurin Yu.V., Shiverskiy E.A. Prediction of durability and reliability of high-pressure structural elements. Part 2. Computational statistical modeling. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [Proceedings of Higher Educational Institutions. Маchine Building], 2013, no. 12, pp. 10--18 (in Russ.). DOI: 10.18698/0536-1044-2013-12-10-18

[2] Perfilov V.A., Oreshkin D.V., Zemlyanushnov D.Yu. Concrete strength and crack resistance control. Procedia Eng., 2016, vol. 150, pp. 1474--1478. DOI: 10.1016/j.proeng.2016.07.085

[3] Yang X.L., Zhou T., Li W.T. Reliability analysis of tunnel roof in layered Hoek--Brown rock masses. Comput. Geotech., 2018, vol. 104, pp. 302--309. DOI: 10.1016/j.compgeo.2017.12.007

[4] Lemekhov V.V., Nadtochiy V.I., Pikalov A.A., et al. Tekhnicheskie resheniya po korpusu reaktornogo bloka RU BREST-OD-300 [Technical solutions on RU BREST-OD-300 reactor block vessel]. Moscow, NIKIET Publ., 2013, pp. 24--26.

[5] Bozin S.N., Ershov N.S., Lemekhov V.V. Promyshlennoe osvoenie bimetallicheskogo lista dlya izgotovleniya vnutrenney obolochki zhelezobetonnogo korpusa parogeneriruyushchego bloka BREST-OD-300 [Commercial exploitation of bimetal sheet for production of inner shell of reinforced concrete vessel of BREST-OD-300 steam-generation unit]. Moscow, NIKIET Publ., 2012, pp. 194--195.

[6] Grunin V.V., Modestov V.S., Lukin A.V., et al. Primenenie nelineynykh modeley betona dlya otsenki nesushchey sposobnosti konstruktsii korpusa bloka reaktornogo pri vozdeystvii vysokikh temperature [Application of nonlinear concrete models for assessment bearing capacity of reactor block vessel at high temperatures]. Nedelya nauki SPbPU. Mat. nauch. foruma s mezhdunar. uchastiem [SPbPU Science Week. Proc. Sci. Meeting with Int. Participation]. St. Petersburg, SPbPU Publ., 2016, pp. 293--296 (in Russ.).

[7] Abaqus 6.13 Theory Guide. dsk.ippt.pan.pl: website. Available at: http://dsk.ippt.pan.pl/docs/abaqus/v6.13/books/stm/default.htm?startat=ch07s01atr01.html (accessed: 15.04.2019).

[8] Parton V.Z., Morozov E.M. Mekhanika uprugoplasticheskogo razrusheniya [Mechanics of elastic-plastic fracture]. Moscow, Nauka Publ., 1985.

[9] NP-084-15. Pravila kontrolya osnovnogo metalla, svarnykh soedineniy i naplavlennykh poverkhnostey pri ekspluatatsii oborudovaniya, truboprovodov i drugikh elementov atomnykh stantsiy [NP-084-15. Control regulations for main metal, welded junctions and fused surfaces at exploitation of equipment, pipelines and other nuclear plant elements]. Moscow, Federal’naya sluzhba po ekologicheskomu, tekhnologicheskomu i atomnomu nadzoru Publ., 2016.

[10] Sharyy N.V., Semishkin V.P., Piminov V.A., et al. Prochnost’ osnovnogo oborudovaniya i truboprovodov reaktornykh ustanovok VVER [Strength of main equipment and pipelines of reactor facilities]. Moscow, IzdaAT Publ., 2004.

[11] RB-100-15. Rekomendatsii po poryadku vypolneniya analiza nadezhnosti sistem i elementov atomnykh stantsiy, vazhnykh dlya bezopasnosti, i ikh funktsiy [RB-100-15. Guidelines on run sequence of reliability and functional analysis for safety-important systems and elements of nuclear plants]. Moscow, Rostekhnadzor Publ., 2015.

[12] Mastitskiy S.E., Shitikov V.K. Statisticheskiy analiz i vizualizatsiya dannykh s pomoshch’yu R [Statistical analysis and visualization of data by means of R] (in Russ.). Available at: https://mospolytech.ru/storage/b53b3a3d6ab90ce0268229151c9bde11/files/Mastitsky_and_Shitikov_2014.pdf (accessed: 15.04.2019).

[13] Sobol’ S.M. Chislennye metody Monte-Karlo [Numerical methods of Monte-Carlo]. Moscow, Nauka Publ., 1973.

[14] Shipunov A.B., Baldin E.M., Volkova P.A., et al. Naglyadnaya statistika. Ispol’zuem R [Vivid statistics. Using R]. Moscow, DMK Press Publ., 2012.

[15] PNAE G-002-86. Normy rascheta na prochnost’ oborudovaniya i truboprovodov atomnykh energeticheskikh ustanovok [PNAE G-002-86. Strength calculation code for equipment and pipelines of atomic energy plants]. Moscow, Energoatomizdat Publ., 1989.