Turbulence Model Validation During Analysis of the Turbulent Boundary Layer Structure near a Rectangular Ridge on a Plate
Authors: Afanas’ev V.N., Egorov K.S., Dehai Kong | Published: 07.12.2018 |
Published in issue: #6(123)/2018 | |
Category: Power Engineering | Chapter: Heat Engines | |
Keywords: numerical computations, turbulence models, rectangular ridge, plate, velocity pulses |
We present validation of dual-parameter dissipative turbulence models and a multiparameter Reynolds stress model that are implemented in the UDF (user defined function) enabled ANSYS FLUENT software package, for the case of two-dimensional detached turbulent flow near a rectangular ridge on a plate. We compared our numerical estimations to velocity curves and turbulence characteristics obtained in an experiment. We detected that the low-Reynolds-number non-linear (k--ε)-model (LRN-LCL) and the multi-parameter Reynolds stress model (LRN-GL) provide more accurate estimations of the average velocity field and turbulence anisotropy before and after the ridge
The study was partially supported by the Ministry of Education and Science of the Russian Federation (government assignment no. 13.5521.2017/BCh)
References
[1] Afanasyev V.N., Chudnovsky Ya.P., Leontiev A.I., Roganov P.S. Turbulent flow friction and heat transfer characteristics for spherical cavities on a flat plate. Exp. Therm. Fluid Sci., 1993, vol. 7, no. 1, pp. 1–8. DOI: 10.1016/0894-1777(93)90075-T
[2] Afanasev V.N., Trifonov V.L., Getya S.I., Kon Dehai. Rib in turbulent boundary layer. Mashinostroenie i kompyuternye tekhnologii [Mechanical Engineering and Computer Science], 2017, no. 10, pp. 13–35 (in Russ.). DOI: 10.24108/1017.0001312
[3] Afanasiev V.N., Kong Deuai. Rectangular ribs in turbulent boundary layer on the initially smooth surface. Journal of Physics: Conference Series, 2017, vol. 891, 012140 p. DOI: 10.1088/1742-6596/891/1/012140
[4] Smulsky Ya.I., Terekhov V.I., Yarygina N.I. Heat transfer in turbulent separated flow behind a rib on the surface of square channel at different orientation angles relative to flow direction. Int. J. Heat Mass Transfer, 2012, vol. 55, no. 4, pp. 726–733. DOI: 10.1016/j.ijheatmasstransfer.2011.10.037
[5] Leschziner M.A., Drikakis D. Turbulence modelling and turbulent flow computation in aeronautics. The Aeronautical Journal, 2002, vol. 106, no. 1061, pp. 349–384. DOI: 10.1017/S0001924000092137
[6] Kato M., Launder B.E. The modeling of turbulent flow around stationary and vibrating square cylinder. Ninth Symposium on Turbulent Shear Flows. Kyoto, 1993. Vol. 10-4. 6 p.
[7] Shih T.H., Liou W.W., Shabbir A., Yang Z., Zhu J. A new k–e eddy viscosity model for high Reynolds number turbulent flows — model development and validation. Comput. Fluids, 1995, vol. 24, no. 3, pp. 227–238. DOI: 10.1016/0045-7930(94)00032-T
[8] Abe K., Kondoh T., Nagano N. A new turbulence model for predicting fluid flow and heat transfer in separating and reattaching flow I: flow field calculation. Int. J. Heat Mass Transfer, 1994, vol. 37, no. 1, pp. 139–151. DOI: 10.1016/0017-9310(94)90168-6
[9] Durbin P.A. Separated flow computations with the k–ε–v2 model. AIAA J., 1995, vol. 33, no. 4, pp. 659–664. DOI: 10.2514/3.12628
[10] Davidson L., Nielsen P.V., Sveningsson A. Modifications of the v2–f model for computing the flow in a 3D wall jet. Proc. Int. Symp. Turbulence, Heat Mass Transfer, 2003, vol. 4, pp. 577–584.
[11] Leontev A.I., Shishov E.V., Zakharov A.Yu. Model for heat and momentum transport in turbulent separated flow behind a backward-facing step. DAN. Ser. Mekhanika, 1995, vol. 341, no. 3, pp. 341–345 (in Russ.).
[12] Fluent 17.2 theory guide. ANSYS Fluent Inc., 2016.
[13] Belov I.A., Isaev S.A., Korobkov V.A. Zadachi i metody rascheta otryvnykh techeniy neszhimaemoy zhidkosti [Problems and methods of calculating incompressible separated flows]. Leningrad, Sudostroenie Publ., 1989. 256 p.
[14] Ehrhard J., Moussiopoulous N. On a new nonlinear turbulence model for simulating flows around building shaped structures. Journal of Wind Engineering and Industrial Aerodynamics, 2000, vol. 88, no. 1, pp. 91–99. DOI: 10.1016/S0167-6105(00)00026-X
[15] Shih T.H., Zhu J., Lumley J.L. A realizable Reynolds stress algebraic equation model. NASA-TM-105993. NASA, 1993, 38 p.
[16] Rhee G.H., Sung H.J. A nonlinear low-Reynolds number heat transfer model for turbulent separated and reattaching flows. Int. J. Heat Mass Transfer, 2000, vol. 43, no. 8, pp. 1439–1448. DOI: 10.1016/S0017-9310(99)00223-9
[17] Craft T.J., Launder B.E., Suga K. Development and application of a cubic eddy-viscosity model of turbulence. Int. J. Heat Fluid Flow, 1996, vol. 17, no. 2, pp. 108–115. DOI: 10.1016/0142-727X(95)00079-6
[18] Lien F.S., Chen W.L., Leschziner M.A. Low Reynolds-number eddy-viscosity modeling based on non-linear stress-strain/vorticity relations. Engineering turbulence modelling and experiments. Elsevier Science, 1996, vol. 3, pp. 91–100.
[19] Gibson M.M., Launder B.E. Ground effects on pressure fluctuations in the atmospheric boundary layer. Journal of Fluid Mechanics, 1978, vol. 86, no. 3, pp. 491–511. DOI: 10.1017/S0022112078001251
[20] Launder B.E., Shima N. Second-moment closure for the near-wall sublayer-development and application. AIAA J., 1989, vol. 27, no. 10, pp. 1319–1325. DOI: 10.2514/3.10267