|

Development of the Working Process Simplified Mathematical Model of the Wet Steam Low-Speed Piston Compressor for the Refrigeration Units

Authors: Sadvakasov D.Kh., Raykovskiy N.A., Chernov G.I., Evdokimov V.S. Published: 26.09.2024
Published in issue: #3(150)/2024  

DOI:

 
Category: Power Engineering | Chapter: Machines and Devices, Processes of Refrigeration and Cryogenic Engineering, Air Conditioning  
Keywords: refrigerant, wet steam, refrigeration cycle, low-speed compressor, condensation

Abstract

The paper presents a mathematical model for computing the working process in the wet steam region of the low-speed piston refrigeration compressor stage. It is used to study the working process duration influence on efficiency of the refrigeration cycle and the compressor integral energy characteristics. The R134a refrigerant is accepted as the working fluid. Methodology in calculating the compressor working processes in the wet steam region is based on three main equations: first law of thermodynamics, Clapeyron --- Clausius equation and equation of the real gas state. A special feature of the developed mathematical model lies in creation of the differential equation system describing alterations in temperature, pressure and dryness degree in the working cavity of a low-speed piston refrigeration compressor stage taking into account the Clapeyron --- Clausius equation. Results of the refrigeration cycle computation showed that efficiency of a refrigerator using the low-speed piston compressor stage operating in the wet steam region would increase the system refrigeration coefficient by 2 times by reducing the indicator power by 2 times, as well as reduce the condenser heat load by ~ 40 %

Please cite this article in English as:

Sadvakasov D.Kh., Raykovskiy N.A., Chernov G.I., et at. Development of the working process simplified mathematical model of the wet steam low-speed piston compressor for the refrigeration units. Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering, 2024, no. 3 (150), pp. 118--135 (in Russ.). EDN: ALNETV

References

[1] Yusha V.L., Chernov G.I., Sadvakasov D.H. The efficiency theoretical analysis of the ammonia refrigeration cycle based on the compression in the wet vapor region.AIP Conf. Proc., 2020, vol. 2285, art. 030078. DOI: https://doi.org/10.1063/5.0029565

[2] Sadvakasov D.H., Chernov G.I., Yusha V.L. Analysis of the uncertainty factors influence on the mathematical modelling of ammonia compression in the wet vapor region. AIP Conf. Proc., 2021, vol. 2412, art. 030043. DOI: https://doi.org/10.1063/5.0029565

[3] Sadvakasov D.Kh., Chernov G.I., Evdokimov V.S., et al. The analysis of the effect of piston speed on the operation of a refrigeration compressor operating in the area of wet steam. Omskiy nauchnyy vestnik. Ser. Aviatsionno-raketnoe i energeticheskoe mashinostroenie [Omsk Scientific Bulletin. Ser. Aviation-Rocket and Power Engineering], 2022, vol. 6, no. 4, pp. 26--31 (in Russ.). DOI: https://doi.org/10.25206/2588-0373-2022-6-4-26-31

[4] Syazin I.E., Shamarov M.V., Kasyanov G.I., et al. Increasing of refrigeration index by the way of automatic protection out of refrigeration compressor liquid hammer. Sovremennye nauchnye issledovaniya i innovatsii [Modern Scientific Researches and Innovations], 2021, no. 4 (in Russ.). Available at: https://web.snauka.ru/issues/2021/04/95238

[5] Patil V.C., Acharya P., Ro P.I. Experimental investigation of heat transfer in liquid piston compressor. Appl. Therm. Eng., 2019, vol. 146, pp. 169--179. DOI: https://doi.org/10.1016/j.applthermaleng.2018.09.121

[6] Shcherba V.E., Pavlyuchenko E.A., Nosov E.Yu., et al. Approximation of the compression process to isothermal in a reciprocating compressor with a liquid piston. Appl. Therm. Eng., 2022, vol. 207, art. 118151. DOI: https://doi.org/10.1016/j.applthermaleng.2022.11815

[7] Dutta A.K., Yanagisawa T., Fukuta M. A study on compression characteristic of wet vapor refrigerant. Int. Compressors Engineering Conf., 1996, paper 1112, pp. 235--240.

[8] Nikolow A., Brummer A. A two-phase approach for simulation of water-flooded twin-screw machines validated for expander applications. IOP Conf. Ser., Mater. Sc. Eng., 2022, vol. 1267, art. 012020. DOI: https://doi.org/10.1088/1757-899X/1267/1/012020

[9] Infante Ferreira C.A., Zaytsev D., Zamfirescu C. Wet compression of pure refrigerants. Int. Compressor Engineering Conf., 2006, paper 1778.

[10] Lin J., Lian Y., Wu J. Numerical investigation on vapor-liquid two-phase compression in the cylinder of rotary compressors. Appl. Therm. Eng., 2020, vol. 170, art. 115022. DOI: https://doi.org/10.1016/j.applthermaleng.2020.115022

[11] Boshnyakovich F. Tekhnicheskaya termodinamika. T. 1 [Technical thermodynamics. Vol. 1]. Moscow, Leningrad, Gosenergoizdat Publ., 1955.

[12] Kirillin V.A., Sheyndlin A.E., Sychev V.V. Tekhnicheskaya termodinamika [Technical thermodynamics]. Moscow, Energoatomizdat Publ., 1983.

[13] Frenkel M.I. Porshnevye kompressory. Teoriya, konstruktsii i osnovy proektirovaniya [Reciprocating compressors. Theory, constructions and fundamentals of design]. Leningrad, Mashinostroenie Publ., 1969.

[14] Plastinin P.I., Tvalchrelidze A.K. Vvedenie v matematicheskoe modelirovanie porshnevykh kompressorov [Introduction to mathematical modeling of reciprocating compressors]. Moscow, MVTU Publ., 1976.

[15] Mikheev M.A., Mikheeva I.M. Osnovy teploperedachi [Fundamentals of heat transfer]. Moscow, Energiya Publ., 1977.

[16] Kutateladze S.S. Osnovy teorii teploobmena [Fundamentals of heat transfer theory]. Moscow, Atomizdat Publ., 1979.

[17] Guygo E.I., ed. Teoreticheskie osnovy khladotekhniki. Ch. 2. Teplomassoobmen [Theoretical foundations of refrigeration engineering. P. 2. Heat and mass transfer]. Moscow, Koloss Publ., 1994.

[18] Danilova G.N., Bogdanov S.N., Ivanov O.P., et al. Teploobmennye apparaty kholodilnykh ustanovok [Heat exchangers of refrigeration units]. Leningrad, Mashinostroenie Publ., 1986.

[19] Labuntsov D.A. Generalized dependences for heat transfer during bubble boiling of liquids. Teploenergetika, 1960, no. 5, pp. 76--81 (in Russ.).

[20] Voynov N.A., Zhukova O.P., Nikolaev A.N. Heat transfer in condensation and boiling in a tubular film evaporator. Theor. Found. Chem. Eng., 2012, vol. 46, no. 4, pp. 359--367. DOI: https://doi.org/10.1134/S0040579512030104

[21] Samoylov D.N., Samoylov N.P., Mukhutdinov Yu.M. Crankless reciprocating opposition piston compressor capacity and delivery ratio. Vestnik KGTU im. A.N. Tupoleva, 2010, no. 1, pp. 27--29 (in Russ.).