|

Computational and Experimental Study of the Autorotating Rotor Traction Characteristics

Authors: Menzul Published: 25.09.2024
Published in issue: #3(150)/2024  

DOI:

 
Category: Mechanical Engineering and Machine Science | Chapter: Ground Transport and Technological Means and Complexes  
Keywords: all-terrain vehicle, rotor, autorotation, experiment, validation

Abstract

Bauman Moscow State Technical University is engaged in improving cross-country ability of the all-terrain vehicles using the autogyro technologies. A review of domestic and foreign sources demonstrates that any published adequate methodology for computing traction characteristics of the autogyro autorotating rotors with a common horizontal hinge is missing. The paper presents an analytical methodology for calculating aerodynamic characteristics of the autorotating rotor with a common horizontal hinge based on the Glauert --- Lock theory. A mobile specialized test bench was created for experimental study of the autorotating rotor and validation of the developed computation methodology on the BRP Outlander 6 × 6 all-terrain vehicle chassis. Main characteristics of the "Kazachok" autogyro rotor were experimentally studied. Thrust and rotation frequency were measured depending on the oncoming airflow speed and angle of attack. High convergence of the computation results obtained using the analytical methodology with the experimental data in the steady-state autorotation modes was shown. Further development of the analytical methodology is carried out in order to ensure the possibility of simulating rotor dynamics in the modes of unsteady autorotation, efforts on the controls and stability in the blades flapping motion

Please cite this article in English as:

Menzulskiy S.Yu. Computational and experimental study of the autorotating rotor traction characteristics. Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering, 2024, no. 3 (150), pp. 76--89 (in Russ.). EDN: YZVNAU

References

[1] Bratukhin I.P. Avtozhiry. Teoriya i raschet [Gyroplanes. Theory and calculation]. Moscow, Leningrad, GOSMASHMETIZDAT Publ., 1934.

[2] Vildgrube L.S. Vertolety. Raschet integralnykh aerodinamicheskikh kharakteristik i letno-tekhnicheskikh dannykh [Helicopters. Calculation of integral aerodynamic characteristics and flight performance]. Moscow, Mashinostroenie Publ., 1977.

[3] Volodko A.M. Osnovy aerodinamiki i dinamiki poleta vertoletov [Fundamentals of aerodynamics and flight dynamics of helicopters]. Moscow, Transport Publ., 1988.

[4] Mil M.L., Nekrasov A.V., Braverman A.S., et al. Vertolety. Raschet i proektirovanie. Kn. 1. Aerodinamika [Helicopters. Calculation and design. P. 1. Aerodynamika]. Moscow, Mashinostroenie Publ., 1966.

[5] Satarov A. Uproshchennyy raschet avtozhira [Simplified calculation of gyroplane]. Lyubertsy, Ukhtomskiy Vertoletnyy Zavod Publ., 1968.

[6] Yuryev B.N. Impulsnaya teoriya vozdushnykh vintov [Impulse theory of propellers]. Moscow, Akademiya Publ., 1948.

[7] Ricci F., Silva P.A.S.F., Tsoutsanis P., et al. Hovering rotor solutions by high-order methods on unstructured grids. Aerosp. Sc. Technol., 2020, vol. 97, art. 105648. DOI: https://doi.org/10.1016/j.ast.2019.105648

[8] Zhou Ch.L., Chen M., Xu A.A., et al. CFD simulation methods for rotor hovering based on N-S equation. IOP Conf. Ser.: Mater. Sc. Eng., 2019, vol. 685, art. 012031. DOI: https://doi.org/10.1088/1757-899X/685/1/012031

[9] Li Xu, Weng R. High order accurate and low dissipation method for unsteady compressible viscous flow computation on helicopter rotor in forward flight. J. Comput. Phys., 2014, vol. 258, pp. 470--488. DOI: https://doi.org/10.1016/j.jcp.2013.10.033

[10] Chaderjian N.M., Ahmad J.U. Detached eddy simulation of the UH-60 rotor wake using adaptive mesh refinement. Report ARC-E-DAA-TN5074CA. Washington, NASA, 2013.

[11] Mohd N.A.R.N., Barakos G.N. Computation alaerodynamics of hovering helicopter rotors. Mekanikal, 2012, vol. 34, pp. 16--46.

[12] Nielsen E., Diskin B., Yamaleev N. Discrete adjoint-based design optimization of unsteady turbulent flows on dynamic unstructured grids. AIAAJ, 2010, vol. 48, no. 6, pp. 1195--1206. DOI: https://doi.org/10.2514/1.J050035

[13] Costes M., Renaud T., Rodriguez B. Rotorcraft simulations: a challenge for CFD. Int. J. Comput. Fluid Dyn., 2012, vol. 26, no. 6-8, pp. 383--405. DOI: https://doi.org/10.1080/10618562.2012.726710

[14] Polyntsev O.E. Dinamika i prochnost avtorotiruyushchego nesushchego vinta. Dis. kand. tekh. nauk [Dynamics and strength of an autorotating rotor. Cand. Sc. (Eng.). Diss.]. Irkutsk, IDSTU SO RAS, 2003 (in Russ.).

[15] Kalmykov A.A. Dinamicheskie modeli avtozhira i normirovanie usloviy nagruzheniya konstruktsii. Dis. kand. tekh. nauk [Dynamic models of a gyroplane and structural loading conditions. Cand. Sc. (Eng.). Diss.]. Irkutsk, IDSTU SO RAS, 2005 (in Russ.).

[16] Glauert H. Elements of aerofoil and airscrew theory. Cambridge, Cambridge University Press, 1926.

[17] Glauert H., Lock C.N.H. A Summary of the experimental and theoretical investigations of the characteristics of an autogiro. Aeronautical Research Committee Reports and Memoranda, 1928, no. 1162.

[18] Radchenko P.I. Krugovaya obduvka profilya NACA 23012 v aerodinamicheskoy trube T-103N TsAGI [Circular blowing of the NACA 23012 profile in a wind tunnel T-103H TsAGI]. Zhukovskiy, Byuro nauchnoy informatsii TsAGI Publ., 1959.

[19] Radhakrishnan P.M. CFD analysis of NACA 2415 and 23012 airfoil. IJRAME, 2019, vol. 7, no. 4, pp. 11--17.

[20] Vdovin D.S., Chichekin I.V., Levenkov Ya.Yu., et al. Development of a quadricycle dynamic mathematical model methodology to calculate early design stages loads on the frame and chassis. Trudy NAMI, 2021, no. 2, pp. 46--57 (in Russ.). DOI: https://doi.org/10.51187/0135-3152-2021-2-46-57

[21] Lyashenko M., Potapov P., Dolotov A., et al. Analysis of ATV transmission operation according to the results of tests on a dynamometer test bench. IOP Conf. Ser.: Mater. Sc. Eng., 2020, vol. 820, no. 1, art. 012018. DOI: http://dx.doi.org/10.1088/1757-899X/820/1/012018