|

A Multi-Criteria Model of Determining the Best Available Technology Under Fuzzy Input Data

Authors: Ptuskin A.S., Levner E., Zhukova Ju.M. Published: 06.12.2016
Published in issue: #6(111)/2016  

DOI: 10.18698/0236-3941-2016-6-105-127

 
Category: Mechanical Engineering and Machine Science | Chapter: Product Quality Management. Standardization. Organization of Production  
Keywords: ecology, best available technology, environmental and economic models, multi-criteria decision making, fuzzy sets theory

One of the key elements in solving environment-protection problems is introducing the principles of the best available technologies, which are effective in evaluating and regulating the negative impact industrial plants have on the environment. The term "best available technologies" (BAT) are defined as the production technologies, processes and services, determined on the basis of modern science and technology, with the best combination of criteria to achieve environmental objectives subject to availability of technical possibilities being taken into account. The problem of selecting the best available technologies is based on the valuation of pollution and counter-pollution measures and the regulation of the negative impact of industrial production on the environment. Comparing alternative technological options is a complex task in which many environmental, technological, economic and social criteria should be taken into account. One of the main conditions for the correct selection of tools for decision making on BAT is to adequately address uncertain input data. For the correct assessment of alternative technologies including comparison of the levels of negative impacts on the environment, we propose a model of multi-criteria decision making with fuzzy parameters which is a variant of the fuzzy multicriteria decision making methodology called TOPSIS. A stepwise algorithm for multi-criteria decision-making is developed that allows us to operate with uncertain, fuzzy input data using subjective expert evaluations. The proposed method is illustrated with a real-life example which verifies and justifies the method, and illustrates its effectiveness and ability to provide an objective decision-making solution.

References

[1] Krass M.S. Model of connections in the ecology-human vital activity system. Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki [Herald of the Bauman Moscow State Technical University. Ser. Natural Sciences], 2012, no. 1, pp. 74-92 (in Russ.).

[2] Federal’nyy zakon Rossiyskoy Federatsii ot 21 iyulya 2014 g. № 219-FZ "O vnesenii izmeneniy v Federal’nyy zakon "Ob okhrane okruzhayushchey sredy" i otdel’nye zakonodatel’nye akty Rossiyskoy Federatsii" [Federal law of the Russian Federation dated July 21, 2014 No. 219-FZ "On amendments to the federal law on environmental protection" and certain legislative acts of the Russian Federation"].

[3] Volkov V.I. Procedure of expert estimation of projects with innovation trend. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie [Herald of the Bauman Moscow State Technical University. Ser. Mechanical Engineering], 2004, no. 3, pp. 100-113 (in Russ.).

[4] BREF economics and cross-media effects. URL: http://eippcb.jrc.ec.europa.eu/reference/ecm.html (accessed 10.05.2016)

[5] Kleiner G.B. Economic and mathematical methods and economic theory. Ekonomika i matematicheskie metody, 2001, vol. 37, no. 3, pp. 111-126 (in Russ.).

[6] Panova S.A., Tishaeva I.R. System model for identification of the best available technology (BAT). Vestnik MITHT, 2014, vol. 9, no. 5, pp. 83-85 (in Russ.).

[7] Zhuravel N.M. Expert system for the environmental and economic efficiency of best available technology in improving the exploitation of natural resources in Siberia. Interexpo Geo-Sibir [Interexpo Geo-Siberia], 2014, vol. 3, no. 1, pp. 95-99 (in Russ.).

[8] Ivanushkin S.V., Chechevatova O.U. The methodical approach to the definition of domestic best available technologies. Izvestiya Instituta Inzhenernoy Phiziki, 2015, vol. 2, no. 36, pp. 77-79 (in Russ.).

[9] Giner-Santonja G., Aragones-Beltran P., Niclos-Ferragut J. The application of the analytic network process to the assessment of best available techniques. Journal of Cleaner Production, 2012, vol. 25, pp. 86-95. DOI: 10.1016/j.jclepro.2011.12.012

[10] Belton V., Stewart T. Multiple criteria decision analysis. An integrated approach. Dordrecht, Netherlands, Kluwer Academic Publishers, 2002. 372 p. DOI: 10.1007/978-1-4615-1495-4

[11] Huang I.B., Keisler J., Linkov I. Multi-criteria decision analysis in environmental science: ten years of applications and trends. Science of the Total Environment, 2011, vol. 409, no. 19, pp. 3578-3594. DOI:10.1016/j.scitotenv.2011.06.022

[12] Ibanez-Fores V., Bovea M.D., Perez-Belis V. A holistic review of applied methodologies for assessing and selecting the optimal technological alternative from a sustainability perspective. Journal of Cleaner Production, 2014, vol. 70, pp. 259-281. DOI: 10.1016/j.jclepro.2014.01.082

[13] Brechet T., Tulkens H. Beyond BAT: selecting optimal combinations of available techniques, with an example from the limestone industry. Journal of Environmental Management, 2009, vol. 90, no. 5, pp. 1790-1801. DOI: 10.1016/j.jenvman.2008.11.012

[14] Ptuskin A.S. Nechetkie modeli i metody v menedjmente [Fuzzy models and methods in management]. Moscow, Bauman MSTU Publ., 2008. 216 p.

[15] Levner E.V., Ptuskin A.S., Friedman A.A. Razmytye mnozhestva i ih primenenie [Fuzzy sets and their applications]. Moscow, CEMI RSS Publ., 1998. 108 p.

[16] Ptuskin A.S. Reshenie strategicheskih zadach v usloviyah razmytoy informacii [The solution of strategic problems in conditions of fuzzy information]. Moscow, Dashkov & K Publ., 2003. 240 p.

[17] Orlov A.I., Lucenko E.V. Sistemnaya nechetkaya intervalnaya matematika [Systemic interval fuzzy mathematic]. Krasnodar, KubSAU Publ., 2014. 600 p.

[18] Cengiz K. Fuzzy multi-criteria decision making: theory and applications with recent developments. Springer, 2008. 591 p. DOI: 10.1007/978-0-387-76813-7

[19] Herva M., Roca E. Review of combined approaches and multi-criteria analysis for corporate environmental evaluation. Journal of Cleaner Production, 2013, vol. 39, pp. 355-371. DOI: 10.1016/j.jclepro.2012.07.058

[20] Wang J.J., Jing Y.Y., Zhang C.F., Zhao J.H. Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renew. Sustain. Energy Rev., 2009, vol. 13, no. 9, pp. 2263-2278. DOI: 10.1016/j.rser.2009.06.021

[21] Baysal M.E., Sarucan A., Kahraman C., Engin O. The selection of renewableenergy power plant technology using fuzzy data envelopment analysis. Proceedings of the 2011 World Congress on Engineering, 2011, pp. 1140-1143.

[22] Bonano E.J., Apostolakis G.E., Salter P.F., Ghassemi A., Jennings S. Application of risk assessment and decision analysis to the evaluation, ranking and selection of environmental remediation alternatives. J. Hazard. Mater., 2000, vol. 71, no. 1-3, pp. 35-57. DOI: 10.1016/S0304-3894(99)00071-0

[23] Chowdhury S., Husain T. Evaluation of drinking water treatment technology: an entropy-based fuzzy application. J. Environ. Eng., 2006, vol. 132, no. 10, pp. 1264-1271. DOI: 10.1061/(ASCE)0733-9372(2006)132:10(1264)

[24] Geldermann J., Rentz O. Integrated technique assessment with imprecise information as a support for the determination of best available techniques (BAT). Spektrum, 2001, vol. 23, no. 1, pp. 137-157. DOI: 10.1007/PL00013341

[25] Krajnc D., Mele M., Glavic P. Fuzzy logic model for the performance benchmarking of sugar plants by considering best available techniques. Resour. Conserv. Recycl., 2007, vol. 52, no. 2, pp. 314-330. DOI: 10.1016/j.resconrec.2007.05.001

[26] Lin G.T.R., Shen Y.C. A collaborative model for technology evaluation and decisionmaking. J. Sci. Indus. Res., 2010, vol. 69, no. 2, pp. 94-100.

[27] Prabhu T.R., Vizayakumar K. Technology choice using FHDM: a case of iron- making technology. IEEE Trans. Eng. Manag., 2001, vol. 48, no. 2, pp. 209-222. DOI: 10.1109/17.922479

[28] Sadiq R., Khan F.I., Veitch B. Evaluating offshore technologies for produced water management using GreenPro-I: a risk-based life cycle analysis for green and clean process selection and design. Comput. Chem. Eng., 2005, vol. 29, no. 5, pp. 1023-1039. DOI: 10.1016/j.compchemeng.2004.11.003

[29] Wang J.J., Jing Y.Y., Zhang C.F., Shi G.H., Zhang X.T. A fuzzy multi-criteria decisionmaking model for trigeneration system. Energy Policy, 2008, vol. 36, no. 10, pp. 3823-3832. DOI: 10.1016/j.enpol.2008.07.002

[30] GOST R 54097-2010. Resursosberezhenie. Nailuchshie dostupnye tekhnologii. Metod-ologiya identifikatsii. [State standard R 54097-2010. Resources saving. Best available techniques. Identification methodology]. 2012.

[31] Ptuskin A.S. A problem of capital budgeting with fuzzy sets. Ekonomika i mate-maticheskie metody, 2005, vol. 41, no. 2, pp. 95-101 (in Russ.).

[32] Hwang C.L., Yoon K. Multiple attributes decision making methods and applications. Heidelberg, Berlin, Springer, 1981. DOI: 10.1007/978-3-642-48318-9

[33] Chen C.-T. Extensions of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets and Systems, 2000, vol. 114, no. 1, pp. 1-9. D0I:10.1016/S0165-0114(97)00377-1

[34] Orlov A.I. Econometrika [Econometrics]. Moscow, Examen Publ., 2002. 576 p.

[35] Informatsionno-tekhnicheskiy spravochnik po nailuchshim dostupnym tekhnologiyam. ITS 7-2015. Proizvodstvo izvesti [Information and technical reference for the best available techniques. ITS 7-2015. Manufacture of lime]. Moscow, Byuro NDT, 2015. 125 p.

[36] Korzhavy A.P., Ptuskin A.S. Hierarсhiсal structure of the environmental strategy of the industrial enterprise. Kontrolling, 2015, vol. 55, no. 1, pp. 62-69.