Increase in Products Uptime by using Elements of Artificial Intelligence
Authors: Serdyukov V.I., Serdyukova N.A., Shishkina S.I. | Published: 14.02.2017 |
Published in issue: #1(112)/2017 | |
Category: Mechanical Engineering and Machine Science | Chapter: Machines, Units and Technological Processes | |
Keywords: products uptime, partial redundancy, loaded reserve, unloaded reserve, combined redundancy with recovery, possible node states graph, reliability function, average uptime, Kolmogorov - Chapman system |
The reliability of complex technical objects plays an increasingly important role in the age of high speeds and implementation of complex science-intensive technologies in all areas of human activity. The article describes one of the ways to increase products uptime due to the combined redundancy with recovery, using elements of artificial intelligence. We identified and investigated its reliability function as well. Moreover, we assessed its advantages and disadvantages and found the partial redundancy the most advantageous under assumption that the switch operates in an automatic mode. We took into account the existing differences in technical parameters and the failure flow rates. The paper presents the system of equations describing the evolution of the stochastic process and its solution, followed by analysis of the obtained results, which demonstrate the advantages of the combined redundancy with recovery. Thus, the proposed mathematical apparatus allows for analysis of the products uptime and the necessity for a more complex system design.
References
[1] Federal’nyy zakon ot 21 iyulya 1997 goda №116-FZ "O promyshlennoy bezopasnosti opasnykh proizvodstvennykh ob’ektov" [Federal law of 21.07.1997 №116-FZ "On industrial security of hazardous industrial facilities"]. Available at: http://www.consultant.ru/document/cons_doc_LAW_15234 (accessed 03.02.2016).
[2] Feodos’ev V.I. Osnovy tekhniki raketnogo poleta [Basics of rocket flight technics]. Moscow, Nauka Publ., 1979. 496 p.
[3] Gnedenko V.B., ed. Matematicheskie metody v teorii nadezhnosti i effektivnosti. Nadezhnost’ i effektivnost’ v tekhnike. T. 2 [Mathematical methods in reliability and effectiveness theory. In: Reliability and effectiveness in technique. Vol. 2]. Moscow, Mashinostroenie Publ., 1987. 280 p.
[4] Abiev R.Sh., Strukov V.G. Nadezhnost’ mekhanicheskogo oborudovaniya i kompleksov [Reliability of mechanical equipment and sets]. Sankt-Petersburg, Prospekt Nauki Publ., 2012. 222 p.
[5] Kravchenko I.P., Puchin E.A., Chepurin A.V. Otsenka nadezhnosti mashin i oborudovaniya: teoriya i praktika [Machinery and equipment reliability evaluation: theory and practice]. Moscow, Al’fa-M Publ., Infra-M Publ., 2012. 334 p.
[6] Brzhozovskiy B.M., Martynov V.V., Skhirtladze A.G. Diagnostika i nadezhnost’ avtomatizirovannykh system [Automated system diagnostics and reliability]. Staryy Oskol, TNT Publ., 2013. 351 p.
[7] Zarubin V.S., Kuvyrkin G.N., Savel’eva I.Yu. Mathematical model of a nonlocal medium with internal state parameters. Inzhenerno-fizicheskiy zhurnal, 2013, vol. 86, no. 4, pp. 768-773 (in Russ.). (Eng. Version of journal: Journal of Engineering Physics and Thermophysics, 2013, vol. 86, no. 4, pp. 820-826. DOI: 10.1007/s10891-013-0900-5 Available at: http://link.springer.com/article/10.1007/s10891-013-0900-5
[8] Kuvyrkin G.N., Savel’eva I.Yu. Mathematical model of micropolar medium with internal state parameters. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2011, no. S, pp. 51-62 (in Russ.).
[9] Markov G.A. Open source program test planning using neural network technology. Trudy Mezhdunarodnogo simpoziuma "Nadezhnost’ i kachestvo" 2014 [Proc. Annual Int. Symp. "Reliability and Quality"] (in Russ.). Available at: http://cyberleninka.ru/article/n/planirovanie-ispytaniy-programm-s-otkrytym-kodom-s-pomoschyu-neyrosetevyh-tehnologiy (accessed 18.01.2016).
[10] Kosolap A.I., Dovgopolaya A.A. Structure optimization of reservation by precise quadratic regularization. Visnik Pridniprovs’kot derzhavnot akademit budivnitstva ta arkhitekturi [Bulletin of Prydniprovs’ka State Academy of Civil Engineering and Architecture], 2015, no. 11, pp. 81-85.
[11] Ivanova A.P., Mezhueva L.V., Piskareva T.I., Gun’ko V.V., Bykov A.V. Decomposition the approach to reliability technical system. Vestnik OGU [Vestnik of the Orenburg State University], 2011, no. 10, pp. 280-283 (in Russ.). Available at: http://vestnik.osu.ru/2011_10/49.pdf
[12] Potapov V.I., Gorn O.A. Program "Solving optimization problem of engineering system recovery under regular control of redundant element functionality". Khroniki ob"edinennogo fonda elektronnykh resursov. Nauka i obrazovanie, 2015, no. 10 (in Russ.).
[13] Ergaliev D.S., Tulegulov A.D., Tulebaeva A.Kh., Ergalieva L.D. Statistic methods of regularity control in random event set. Trudy Mezhdunarodnogo simpoziuma "Nadezhnost’ i kachestvo" 2013 [Proc. Annual Int. Symp. "Reliability and Quality"], 2013, pp. 26-28 (in Russ.).
[14] Pavlov I.V., Razgulyaev S.V. Confidence interval calculations for the system availability index with recoverable components. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2015, no. 4. pp. 15-22 (in Russ.). DOI: 10.18698/1812-3368-2015-4-15-22
[15] Venttsel’ E.S. Issledovanie operatsiy [Operation research]. Moscow, Sovetskoe radio Publ., 1971. 551 p.
[16] Timofeev G.A., Samoylova M.V. Application of method of graphs for structural analysis of planetary and wave mechanism. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Masinostr. [Herald of the Bauman Moscow State Tech. Univ., Mech. Eng.], 2010, no. 2, pp. 3-14 (in Russ.).
[17] Serdyukov V.I., Shishkina S.I. The disjunctive sets application for a multi-stage processes simulation. Inzhenernyy zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation], 2013, no. 8 (in Russ.). DOI: 10.18698/2308-6033-2013-8-892 Available at: http://engjournal.ru/eng/catalog/mathmodel/hidden/892.html
[18] Mochalov V.A. Method of designing fault-tolerant structure in the presence of sensory network restrictions for placing nodes in heterogeneous space. T-Comm-Telekommunikatsii i Transport [T-Comm-Telecommunications and Transport], 2012, no. 10, pp. 71-75 (in Russ.).
[19] Agafonov S.A., German A.D., Muratova T.V. Differentsial’nye uravneniya [Differential equations]. Moscow, MGTU im. N.E. Bauman Publ., 2000. 347 p.
[20] Shishkina S.I. About one approach to solving a system of differential equations. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki, Spetc. Vyp. "Matematicheskoe modelirovanie v tekhnike" [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci., Spec. iss. "Mathematical modelling in engineering"], 2012, spec. no. S, pp. 213-218 (in Russ.).