Investigating Hydroacoustic Properties of Materials

Authors: Ivanov M.V., Gavrilev S.A., Trofimov S.A., Ksenofontov B.S., Ivanova O.A. Published: 02.08.2018
Published in issue: #4(121)/2018  

DOI: 10.18698/0236-3941-2018-4-71-83

Category: Mechanical Engineering and Machine Science | Chapter: Manufacturing Engineering  
Keywords: hydroacoustics, impedance tube, anechoic chamber

The study deals with designing an impedance tube for investigating acoustic reflectivity, acoustic absorption coefficient and acoustic impedance of various materials when used underwater. We employed our installation to determine hydroacoustic properties of the following soundproofing materials: three types of extruded polystyrene foam as well as a mixture of cement and wood chips. We describe our methods of conducting experiments, calibrating equipment and reducing instrument errors in measurement. We show that certain samples of extruded polystyrene foam have high acoustic absorption coefficients (up to 0.9) in the 3 to 6 kHz frequency range. We provide recommendations for using these materials to create underwater anechoic chambers


[1] Scott Sutherland Corbett III. A two hydrophone technique for measuring the complex reflectivity of materials in water filled tubes. Technical Memorandum TM 82-246. Pennsylvania State University, 1982.

[2] Muggleton J.M., Pinnington P.J. A low frequency anechoic lining for underwater use. J. Sound and Vibration, 1990, vol. 143, no. 2, pp. 183–197. DOI: 10.1016/0022-460X(90)90949-Z

[3] Darner C.L. An anechoic tank for underwater sound measurements under high hydrostatic pressures. JASA, 1954, vol. 26, no. 1, pp. 221–222. DOI: 10.1121/1.1917828

[4] Tamarkin P., Eby R.K. Tank wall lining for underwater sound use. JASA, 1955, vol. 27, no. 4, pp. 692–698. DOI: 10.1121/1.1907997

[5] Mason W.P., Hibbard F.H. Absorbing media for underwater sound measuring tanks and baffles. JASA, 1948, vol. 20, no. 4, pp. 476–482. DOI: 10.1121/1.1906400

[6] Bjorno L., Kjeldgaard M. A wide frequency band anechoic water tank. Acta Acustica, 1975, vol. 32, no. 2, pp. 103–109.

[7] Cheng G., He D., Shu G. Underwater sound absorption property of porous aluminum. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2001, vol. 179, no. 2-3, pp. 191–194. DOI: 10.1016/S0927-7757(00)00656-7

[8] Munin A.G., ed. Aviatsionnaya akustika. Ch. 1. Shum na mestnosti dozvukovykh passazhirskikh samoletov i vertoletov [Aviation acoustics. P. 1. Subsonic passenger aircraft and helicopters afield noise]. Moscow, Mashinostroenie Publ., 1968. 242 p.

[9] Igolkin A.A., Gasparov S.S. Program for measuring the acoustic properties of sound absorbing materials in the impedance tube. Sb. trudov IX Mezhd. nauch.-prakt. konf [Proc. IX Int. Sci.-Pract. Conf.], 2010, pp. 496–498 (in Russ.).

[10] Chung J.Y., Blaser D.A. Transfer function method of measuring in-duct. Аcoustic properties. I. Theory. II. Experiment. J. Acoust. Soc. Am., 1980, vol. 68, no. 3, pp. 907–921. DOI: 10.1121/1.384778 DOI: 10.1121/1.384779 Available at: https://asa.scitation.org/doi/10.1121/1.384778 https://asa.scitation.org/doi/10.1121/1.384779

[11] Wolkesson M. Evaluation of impedance tube methods — а two microphone in-situ method for road surfaces and the three microphone transfer function method for porous materials. Masters thesis. Chalmers University of Technology, 2013. 81 p.

[12] Kuznetsova I.V. Opredelenie skorosti zvuka metodom stoyachikh voln v trube. Obshchiy fizicheskiy praktikum [Determination of the sound velocity using standing waves method in tube. General physics practicum]. Moscow, Lomonosov MSU Publ., 2012. 25 p.