Automated Algorithm for Nonlinear Optimization of Mechanical Pre-Processing

Authors: Galkin M.G., Smagin A.S.  Published: 05.12.2017
Published in issue: #6(117)/2017  

DOI: 10.18698/0236-3941-2017-6-68-78

Category: Mechanical Engineering and Machine Science | Chapter: Manufacturing Engineering  
Keywords: automation, technological process, optimization of cutting conditions, Lagrangian multiplier method

One of the urgent tasks for automated multivariant design of the technological process is the selection of optimal regimes of mechanical treatment on all key transitions of each technological operation. When implementing this specific task, one faces numerous problems, such as the choice of the solution method, the choice of the optimization criterion at different stages of treatment, definition of feasible solutions area. The use of linear programming techniques in implementing this algorithm requires a certain simplification of the resulting solutions. This technique works very well with limited computational resources. As the target function and system of constraints are nonlinear when describing the optimal metal cutting process, the most appropriate computing algorithm to efficiently solve the nonlinear programming problem is based on Lagrangian multiplier method. This paper focuses on automation of such specific task for one-tool mechanical metal-working


[1] Tsirlin A.M. Metody optimizatsii dlya inzhenerov [Optimization methods for engineers]. Moscow, Direkt-Media Publ., 2015. 214 p.

[2] Goranskiy G.K. Raschet rezhimov rezaniya pri pomoshchi elektronno-vychislitelnykh mashin [Computer calculation of cutting regimes]. Minsk, BSSR State Publ., 1963. 192 p.

[3] Shoup T.E. A practical guide to computer methods for engineers. Prentice-Hall, 1979. 255 p.

[4] Bertsekas D.P. Constrained optimization and Lagrange multiplier methods. Academic Press, 1982. 395 p.

[5] Ashikhmin V.N. Opredelenie optimalnykh rezhimov rezaniya s pomoshchyu EVM [Optimal cutting regimes definition using computer]. Sverdlovsk, Kirov UPI Publ., 1982. 36 p.

[6] Matalin A.A. Tekhnologiya mashinostroeniya [Mechanical engineering technology]. Leningrad, Mashinostroenie Publ., 1985. 496 p.

[7] Kosilova A.G., Meshcheryakov R.K., red. Spravochnik tekhnologa-mashinostroitelya. V 2 t. T. 2 [Handbook of mechanic engineer technologist. In 2 vols. Vol. 2]. Moscow, Mashinostroenie Publ., 1986. 496 p.

[8] Korchak S.N., Koshin A.A., Rakovich A.G., Sinitsyn B.I. Sistemy avtomatizirovannogo proektirovaniya tekhnologicheskikh protsessov, prisposobleniy i rezhushchikh instrumentov [CAD system for production methods, appliances and cutting tools engineering]. Moscow, Mashinostroenie Publ., 1988. 352 p.

[9] Lasdon Leon S. Optimization theory for Lange system. New York, Macmillan, 1970. 523 p.

[10] Chien-Mien Pang, Ilene J. Busch-Vishniac, Leon S. Lasdon. Optical sensor design using nonlinear programming. Engineering Optimization, 2000, vol. 32, no. 4, pp. 523–548. DOI: 10.1080/03052150008941312 Available at: http://www.tandfonline.com/doi/abs/10.1080/03052150008941312

[11] Ravindra S. Gajulappali, Lasdon L.S. Computational experience with a safeguarded barrier algorithm for sparse nonlinear programming. Computational Optimization and Applications, 2001, vol. 19, no. 1, pp. 107–120. DOI: 10.1023/A:1011276420546 Available at: http://dl.acm.org/citation.cfm?id=379800

[12] Komyagin V.B. Programmirovanie v Excel na yazyke Visual Basic [Programming in Excel on Visual Basic]. Moscow, Radio i svyaz Publ., 1996. 320 p.

[13] Kuritskiy B.Ya. Poisk optimalnykh resheniy sredstvami Excel [Optimum decisions search by means of Excel]. Sankt-Petersburg, BHV–Sankt-Peterburg Publ., 1997. 384 p.

[14] Guzeev V.I., Batuev V.A., Surkov I.V. Rezhimy rezaniya dlya tokarnykh i sverlilno-frezerno-rastochnykh stankov s chislovym programmnym upravleniem [Cutting regimes for turning and drilling-milling-and-boring machines with numerical control]. Moscow, Mashinostroenie Publ., 2005. 368 p.