Experimental Analysis of Elemental Composition of Materials used to Manufacture Gas Generators for Vehicle Airbag Modules
Authors: Gonsales A.A.V., Goncharov R.B., Malishchuk T.S.  | Published: 01.07.2022 |
Published in issue: #2(141)/2022 | |
Category: Mechanical Engineering and Machine Science | Chapter: Machine Science | |
Keywords: airbag module, gas generator, microhardness, strength, elemental composition, spectrometry |
Abstract
The airbag is a part of the Supplementary Restraint System; along with the safety belt, it is the most important system that protects the driver and passengers if the vehicle collides with static or moving objects. Certain interrelated studies and measures are required so as to develop scientific, technical, design and technological foundations for producing airbag modules for various vehicle types: for example, determining the range of suitable domestic materials and alloys, as well as the compositions of pyrotechnic gas-generating charges to manufacture gas generators. We experimentally evaluated mechanical properties and elemental composition of materials that gas generator parts consist of, which allowed us to establish their domestic analogues. We determined the elemental chemical composition of pyrotechnic gas-generating charges (main and auxiliary) and the primer igniter charge. We used the following methods in our work: an experimental full-scale airbag module deactivation method for subsequently decomposing gas generators to obtain the necessary sample parts to investigate; a method for determining the microhardness of material samples to subsequently evaluate their ultimate tensile strengths; finally, laser-induced breakdown spectroscopy, X-ray fluorescence spectrometry, X-ray and infrared spectroscopy, ion and liquid chromatography, Raman spectroscopy and nuclear magnetic resonance to determine the elemental composition of materials
Please cite this article in English as:
Gonsales Astua A.V., Goncharov R.B., Malishchuk T.S. Experimental analysis of elemental composition of materials used to manufacture gas generators for vehicle airbag modules. Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering, 2022, no. 2 (141), pp. 75--88 (in Russ.). DOI: https://doi.org/10.18698/0236-3941-2022-2-75-88
References
[1] Balabin I.V., Bogdanov V.V. Airbag as the element of constructive safety and its main evolutionary stages of incorporation in the vehicle’s design. Avtomobil’naya promyshlennos’, 2019, no. 2, pp. 21--25 (in Russ.).
[2] Kotiev G.O., Petyukov A.V., Gonsales Astua A.V. Experimental-theoretical method for studying the vehicle airbag modules functioning. Trudy NAMI, no. 2, pp. 15--24 (in Russ.). DOI: https://doi.org/10.51187/0135-3152-2021-2-15-24
[3] Andreev S.G., Boyko M.M., Selivanov V.V. Eksperimental’nye metody fiziki vzryva i udara [Experimental methods of explosion and impact physics]. Moscow, FIZMATLIT Publ., 2013.
[4] Davidenkov N.N. Mekhanicheskie svoystva i ispytanie materialov [Mechanical properties and material testing]. Moscow, Kniga po Trebovaniyu Publ., 2017.
[5] Frish S.E. Tekhnika spektroskopii [Spectroscopy technics]. Moscow, Kniga po Trebovaniyu Publ., 2013.
[6] Anur’yev V.I. Spravochnik konstruktora-mashinostroitelya. T. 1 [Handbook of mechanical engineer designer. Vol. 1]. Moscow, Mashinostroenie Publ., 2001.
[7] Dragunova Yu.G., Zubchenko A.S. Marochnik staley i splavov [Steels and alloys grade guide]. Moscow, Mashinostroenie Publ., 2015.
[8] Afonin V.P., Komyak N.I., Nikolaev V.P., et al. Rentgenoflourestsentnyy analiz [X-ray fluorescence analysis]. Novosibirsk, Nauka Publ., 1991.
[9] Konyukhov V.Yu. Khromatografiya [Chromatography]. Moscow, Lan’ Publ., 2012.
[10] Pogorelov V., Lizengevich A., Krivenko B. Raman-spektroskopiya protsessov relaksatsii v zhidkostyakh [Raman spectroscopy of relaxation processes in liquids]. Saarbrucken, Lambert Academic Publ., 2016.
[11] Mel’nikov V.E. Sovremennaya pirotekhnika [Modern pyrotechnics]. Moscow, Nauka Publ., 2014.
[12] Aleshin V.V., Shirokova G.N. Pyrotechnic compositions for nitrogen production based on azides. Khimicheskaya fizika, 1999, vol. 18, no. 2, pp. 72--79 (in Russ.).
[13] Neutz J., Ebeling H., Hill W., et al. Gas generators for deep drawing. Propellants Explos. Pyrotech., 2002, vol. 27, no. 3, pp. 175--178. DOI: https://doi.org/10.1002/1521-4087(200206)27:3<175::aid-prep175>3.0.сo;2-l
[14] Balabin I.V., Bogdanov V.V. Design of airbags and basic principles response its mechanism. Avtomobil’naya promyshlennost’, 2019, no. 4, pp. 15--18 (in Russ.).
[15] Gonsales Astua A.V., Goncharov R.B., Petyukov A.V. The method of strength calculation of the automobile airbag gas generator body. Vestnik MADI, 2022, no. 1 (68), pp. 3--11 (in Russ.).