Tribo-Fatigue Testing of Paint Coating

Authors: Aliyev A.A. Published: 09.02.2018
Published in issue: #1(118)/2018  

DOI: 10.18698/0236-3941-2018-1-92-100

Category: Metallurgy and Science of Materials | Chapter: Material Science  
Keywords: paint coating, fatigue, fatigue strength, thin film, tribo-fatigue testing, stress-strain state, bending, stretching, durability, polyester-urethanе

Protective paint coatings (PC) of machines and aggregates undergo periodic influence of tensile and bending loads causing fatigue cracks and film peeling during operation. Therefore there is a need to determine fatigue strength of coatings to choose proper paint materials. It is known that any load with a large number of loading cycles can lead to fatigue destruction of polymers, that is why for a simple PC lifetime prediction the problem can be reduced to determining the fatigue strength σRN as the value of stress by which a failure occurs after N cycles: σRN=f(N). One of fatigue testing methods of the "substrate-coating" system is a tribo-fatigue testing of "metal-polymer" interfaces, where a vertical load is applied to the elastic polymer coating by indenter (steel ball), which causes a biaxial stress-strain state (SSS) in the film. Kinetics of the process of tribological testing (biaxial state) is similar to combined "stretch-bend" testing. To obtain reliable results, fatigue tests for bending are carried out on dozens of identical samples. An important advantage of the tribo-fatigue scheme is the possibility of repeated testing at different areas of the same coated sample at relatively small amplitudes of the indenter reciprocation. To obtain the "σRN--N" function the complex SSS is converted into a fatigue damage equal uniaxial state. As a sample coating we used an anticorrosive two-component polyester-urethane lacquer (PUL) developed by National Aviation Academy (Baku, Azerbaijan). Generalization of the obtained experimental data on the PUL durability determination (with the correlation coefficient r2=0,994) makes it possible to describe these data with equation σRN=8,16--0,5--lnN or N=exp((8,16--σRN)/0,5), parameter of inclination angle of the fatigue curve is m=9,06


[1] GOST 14236–81. Plenki polimernye. Metod ispytaniya na rastyazhenie [State standard 14236–81. Polymer films. Tensile test method]. Moscow, Izdatelstvo standartov Publ., 1989. 10 p.

[2] Koleske J.V. Paints and coating testing manual. ASTM, 1995. 689 p.

[3] Aynbinder S.B., Tyunina E.L., Tsirule K.I. Svoystva polimerov v razlichnykh napryazhennykh sostoyaniyakh [Properties of polymers in different stress states]. Moscow, Khimiya Publ., 1981. 231 p.

[4] Babaevskiy P.K., Kulik S.G. Treshchinostoykost otverzhennykh polimernykh kompozitsiy [Crack resistance of hardened polymer composites]. Moscow, Khimiya Publ., 1991. 336 p.

[5] Yartsev V.P. Prognozirovanie rabotosposobnosti polimernykh materialov v detalyakh i konstruktsiyakh zdaniy i sooruzheniy [Working ability forecasting of polymers in parts and structures of buildings and installations]. Tambov, TSTU Publ., 2001. 101 p.

[6] Voronin I.V., Kondrashov E.K. Impact of periodic destruction on properties of polymer coatings. LKM, 1980, no. 5, pp. 26–27 (in Russ.).

[7] Voronin I.V., Kondrashov E.K. Life duration of adhesion bond in polymer coatings. Lakokrasochnye materialy i ikh primenenie, 1991, no. 1. pp. 25–26 (in Russ.).

[8] Voronin I.V., Kondrashov E.K. Impact of cyclic bending on properties of polymer coatings. Mekhanika kompozitsionnykh materialov i konstruktsiy, 1980, no. 2, pp. 353–355 (in Russ.).

[9] Nagornyy V.M. Tekhnicheskaya diagnostika mashin [Technical diagnostics of machines]. Sumy, SumGU Publ., 2006, pp. 167–168.

[10] Tushinskiy L.I., Plokhov A.V. Issledovanie struktury i fiziko-mekhanicheskikh svoystv pokrytiy [Research on structure and physical-mechanical properties of coatings]. Moscow, Nauka Publ., 1986, p. 42.

[11] GOST 30638–99. Tribofatika. Terminy i opredeleniya [State standard 30638–99. Tribo-fatigue. Terms and definitions]. Minsk, Interstate Council for Standardization, Metrology and Certification Publ., 1999. 22 p.

[12] Bartenev G.M., Lavrentev V.V. Trenie i iznos polimerov [Friction and wearing of polymers]. Leningrad, Khimiya Publ., 1972, p. 31.

[13] Petrova I.M., Moskvitin G.V., Grib V.V. Effect of wearing on accumulation of fatigue damages. Zavodskaya laboratoriya. Diagnostika materialov [Industrial Laboratory. Materials Diagnostics], 2006, vol. 72, no. 11. pp. 49–52 (in Russ.).

[14] Johnson K.L. Contact mechanics. Cambridge University Press, 1985. 452 p.

[15] Ogar P.M., Deyneko A.A., Shchur D.D. Contact of spherical asperity with elastoplastic half space. Sistemy. Metody. Tekhnologii [Systems. Methods. Technologies], 2009, no. 4, pp. 17–19 (in Russ.).

[16] Selivanov K.S. Assessment of surface material strength on trials by scratch-test method. Vestnik UGATU, 2015, vol. 19, no. 1 (67), pp. 100–106 (in Russ.).

[17] Uplotnitelnyy kompaund [Sealing compound]. Patent AR I 2006 0022. 11.04.2006. A.M. Pashaev, A.Sh. Mekhtiev, T.I. Nizamov, et al.

[18] Karimova S.A., Avdyushkina L.I., Efimova E.A., Nizamov T.I., Aliev A.A. Investigation of the potential application of polyester urethane compound to protect the materials of aviation hardware parts. Trudy VIAM [Proceedings of VIAM], 2015, no. 4 (in Russ.). DOI: 10.18577/2307-6046-2015-0-4-10-10Available at: http://viam-works.ru/ru/articles?art_id=805

[19] Pashaev A.M., Dzhanakhmedov A.Kh., Aliev A.A. Life duration prediction of lacquer coatings using tribo-fatigue tests. Vestnik Azerbaydzhanskoy Inzhenernoy Akademii [Herald of the Azerbaijan Engineering Academy], 2017, vol. 9, pp. 7–14.

[20] Pashaev A.M., Akhundov Z.S., Razumovskiy S.D.  Ozone resistance polyester urethane protective coating. Lakokrasochnye materialy i ikh primenenie [Russian Coatings Journal], 2014, no. 8, pp. 43–45 (in Russ.).

[21] Makhutov N.A. Konstruktsionnaya prochnost, resurs i tekhnogennaya bezopasnost. V 2 ch. Ch. 1. Kriterii prochnosti i resursa [Structural strength, operational life and technogenic safety. In 2 p. P. 1. Strength and operational life criterion]. Novosibirsk, Nauka Publ., 2005. 494 p.

[22] Moskvitin G.V., red. Metody uprochneniya poverkhnostey detaley mashin [Hardening method for machine parts surface]. Moscow, Krasand Publ., 2008, p. 91.

[23] Voronin N.A. The mechanics of contact interaction of a rigid sphere with an elastic-plastic topocomposite. Materials Physics and Mechanics, 2015, vol. 22, no. 1, pp. 20–29 (in Russ.).