Genetic Algorythm-Based Methods for Project Synthesis of Ballistic Installations with Hydrodynamic Effect
Authors: Bykov N.V., Zelentsov V.V. | Published: 11.08.2016 |
Published in issue: #4(109)/2016 | |
Category: Mechanics | Chapter: Dynamics and Strength of Machines, Instruments, and Equipment | |
Keywords: ballistic design, ballistic installation, interior ballistics, interchamber processes, hydrodnamic effect, genetic algorithm |
This paper proposes a method for automated search for rational parameters of ballistic installations with hydrodynamic effect. We consider the techniques for solving direct and inverse problems. The mathematical model takes into account the two-phase nature of gas-powder mixture. We describe the deformable piston in the model of visco-plastic medium and carry out the numerical solution of the direct problem according to Godunov-type scheme with the solution of Riemann problem by means of AUSM+ method. In the areas of hyperbolicity loss we use Rusanov scheme. We perform the synthesis of optimal parameters using the genetic algorithm. The calculation results are given in two variants of optimality criterion.
References
[1] Kureychik V.M., Malyukov S.P., Kureychik V.V., Malyukov A.S. Genetic algorithms for applied CAD problems. Springer, 2009. 253 p.
[2] Khomenko Yu.P., Ishchenko A. N., Kasimov V.Z. Matematicheskoe modelirovanie vnutriballisticheskikh protsessov v stvol’nykh sistemakh [Mathematical Modeling of Interior Ballistics Processes in Barrel Systems]. Novosibirsk, Sib. Otd., Ross. Akad. Nauk Publ., 1999.
[3] Assovskiy I.G. Fizika goreniya i vnutrennyaya ballistika [Physics of Combustion and Interior Ballistics]. Moscow, Nauka Publ., 2005. 357 p.
[4] Rusyak I.G., Ushakov V.M. Vnutrikamernye geterogennye protsessy v stvol’nykh sistemakh [Interchamber heterogeneous processes in barrel systems]. Ekaterinburg, UrO Ross. Akad. Nauk Publ., 2001. 259 p.
[5] Betekhtin S.A., Vinitskiy A.M., Gorokhov N.A. Gazodinamicheskie osnovy vnutrenney ballistiki [Gasdynamic Fundamentals of Internal Ballistics]. Moscow, Oborongiz Publ., 1957.
[6] Bogdanoff D.W. CFD Modelling of bore erosion in two-stage light gas guns. Rep. NASA / TM-1998-112236.
[7] Bogdanoff D.W., Miller R.J. New higher-order godunov code for modelling performance of two-stage light gas guns. Rep. NASA / TM-1995-110363.
[8] Fitt A.D., Crowley A.B., Aston J.A.G. Contrasting numerical methods for two-dimensional two-phase internal ballistics test problems. Proc. 11th. Int. Symp. on Ballistics/ Brussels, 1989, pp. 337-346. Coast, Australia, 2007, 2-7 December. Р. 295-302.
[9] Gollan R.J. et al. Development of сasbar: a two-phase flow code for the interior ballistics problem. 16th Australasian Fluid Mechanics Conference. Crown Plaza, Gold Coast, Australia, 2007, December 2-7, pp. 295-302.
[10] Gorokhov M.S. Vnutrennyaya ballistika stvol’nykh sistem [Interior ballistics of barrel systems]. Moscow, CNII informacii Publ., 1985. 160 p.
[11] Bykov N.V., Vladimirov V.S., Zelentsov V.V. Engineering approach for calculating internal ballistics high-velocity system. Oboronnaya tekhnika [Defense technology], 2011, no. 8, pp. 3-9 (in Russ.).
[12] Bykov N.V., Vladimirov V.S., Zelentsov V.V. Numerical simulation of cylindrical-conical barrels’ interior ballistics with plastic projectile body. Nauka i obrazovanie. MGTU im. N.E. Baumana [Science & Education of the Bauman MSTU. Electronic Journal], 2012, no. 3. Available at: http://technomag.bmstu.ru/en/doc/310721.html
[13] Bykov N.V., Zelentsov V.V., Karneychik A.S. Effect of the length of the tapered section on the ballistic characteristics of cylindroconical barrels with plastic shells. Oboronnaya tekhnika [Defense technology], 2012, no. 8/9, pp. 21-26 (in Russ.).
[14] Bykov N.V., Zelentsov V.V., Karneychik A.S. Bicaliber ballistic gun mount with the deformable piston. Jelektr. nauchno-tekh. izd. "Inzhenernyy zhurnal: nauka i innovacii" [El. Sci.-Tech. Publ. "Eng. J.: Science and Innovation"], 2013, iss. 9. DOI: 10.18698/2308-6033-2013-9-945 Available at: http://engjournal.ru/eng/catalog/machin/rocket/945.html
[15] Bykov N.V., Nesterenko E.A. Analysis and comparison of computer codes for solving the problem of internal ballistics on the test problem AGARD. Oboronnaya tekhnika [Defense Тechnology], 2015, no. 2, pp. 21-36 (in Russ.).
[16] Bykov N.V., Nesterenko E.A. Mathematical modeling and visualization of intrachamber processes in a ballistic setup with hydrodynamic effect. Nauchnaya vizualizatsiya [Scientific Visualization], 2015, vol. 7, no. 1, pp. 65-77. Available at: http://sv-journal.org/2015-1/06.php?lang=en
[17] Bykov N.V., Nesterenko E.A. Automated selection of the design parameters of ballistic systems with hydrodynamic effect on the basis of genetic algorithm. Abstr. VIII All-Russian sci. conf. with inter. participation "Mathematical modeling of the developing economy, ecology and technology". ECOMOD 2014. Moscow, October 21-24, 2014. Moscow, CC Ross. Akad. Nauk Publ., 2014. 53 p.
[18] Semenov I.V., Utkin P.S., Akhmed’yanov I.F., Men’shov I.S. The use of multiprocessor computers for the internal ballistics problems solution. Vychislitel’nye metody i programmirovanie [Numerical methods and programming], 2011, vol. 12, pp. 183-193. Available at: http://num-meth.srcc.msu.ru/english/index.html
[19] Nessbaum J., Helluy P., Herard J.-M., Carriere A. Numerical simulations of gas-particle flows with combustion. Flow, Turbulence and Combustion, 2006, vol. 76, iss. 4, pp. 403-417.
[20] Ioselevich V.A., Pilyugin N.N., Chernyavskii S.Yu. On the effect of friction on the motion of the piston under the action of the combustion products. Prikladnaya mekhanika i tekhnich-eskayafizika [J. of Appl. Mech. and Tech. Phys.], 1978, no. 5, pp. 73-80 (in Russ.).
[21] Kasimov V.Z., Ushakova O.V., Khomenko Yu.P. Numerical modeling of interior ballistics processes in light gas guns. J. of Appl. Mech. and Tech. Phys., 2003, vol. 44, iss. 5, pp. 612-619.
[22] Kulikovskiy A.G., Pogorelov N.V., Semenov A.Yu. Matematicheskie voprosy chislennogo resheniya giperbolicheskikh sistem uravneniy [Mathematical problems of the numerical solution of hyperbolic systems]. Moscow, Nauka Publ., 2001. 608 p.
[23] Liou M. S., Steffen C. J. A new flux splitting scheme. J. of Computational Physics, 1993, vol. 107, pp. 23-39.
[24] Wada Y. A flux splitting scheme with high-resolution and robustness for discontinuities. NASA Tech. Memorandum 106452; AIAA-94-0083, 1994.
[25] Rusanov V.V. The calculation of the interaction of non-stationary shock waves and obstacles. J. Comp. Math. Phys. USSR, 1962, vol. 1, iss. 2, pp. 304-320. DOI: 10.1016/0041-5553(62)90062-9
[26] Schaefer I.A. Investigation of the effectiveness of the genetic algorithm of constrained optimization // Youth and Science: Proc. of the VIII All-Russian sci. and tech. conf. of students, graduate students and young scientists dedicated to the 155th anniversary of Tsiolkovsky [electronic resource]. Krasnoyarsk, Siberian Federal Univ. Publ., 2012. Available at: http://conf.sfu-kras.ru/sites/mn2012/section21.html
[27] Deb K. An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Engrg., 2000, no. 186, pp. 311-338. DOI: 10.1016/S0045-7825(99)00389-8