Application of Inherent Stress Theory to Analysis of Non-Linear Deformation of Materials with Multimodulus Behaviour
Authors: Pakhomov B.M. | Published: 15.04.2015 |
Published in issue: #2(101)/2015 | |
Category: Mechanics | Chapter: Mechanics of Deformable Solid Body | |
Keywords: decomposition of generalized stiffness, plastic flow condition, deformation model, multimodulus behaviour |
A model of non-linear deformation of materials is suggested. The model is based on the decomposition of generalized stiffness on the stiffness defining connections between different deformation directions, and self-stiffness. New condition of plastic flow beginning is obtained for materials with different yield points under tension and compression loads. This condition defines in the space of principal stresses an ellipsoid of rotation with rotational center shifted from the beginning of coordinates. The suggested model allows to describe nonlinear behavior of materials working in elastic domain as conventional materials but having different yield stresses and deformation diagrams in non-elastic domain under tensile and compressing loads.
References
[1] Myasnikov V.P., Oleynikov A.I. Osnovy mekhaniki geterogenno-soprotivlyayushchikhsya sred [Grounds of mechanics of heterogeneously resisting media]. Vladivostok, Dal’nauka Publ., 2007. 172 p.
[2] Met’yuz F., Rolings R. Russ. ed.: Kompozitnye materialy [Compositematerials]. Moscow, Tekhnosfera Publ., 2004. 408 p.
[3] Maksimov R.D., Plume E.Z., Yansons Yu.O. Comparative research of thermosetting polymer mechanical properties at tension and compression.Mekh. Kompozitn. Mater. [Mechanics of Composite Materials], 2005, vol. 41, no. 5, pp. 633-650 (in Russ.).
[4] Bessonov D.E., Zezin Yu.P, Lomakin E.V. Multimodal resistance ofgranular composites based on unsaturated polyesters./zv. Saratov. Univ. Mat. Mekh. Inform., 2009, vol. 9, iss. 4, part. 2, pp. 9-13 (in Russ.).
[5] Bessonov D.E., Ershova A.Yu., Zezin Yu.P., Martirosov M.I., Rybinskiy L.N. Experimental research of deforming and destruction of granular composites based on polyester resins. Mekhanika kompozitsionnykh materialov i konstruktsiy [Journal on Composite Mechanics and Design], 2008, vol. 14, no. 1, pp. 111-125 (in Russ.).
[6] Pakhomov B.M. Plastic yielding condition including Poisson’s ratio. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mech. Eng.], 2014, no. 2, pp. 15-27 (in Russ.).
[7] Pakhomov B.M. Application of the inherent stresses theory to nonlinear deforming of metals and alloys. Jelektr. nauchno-tehn. Izd. "Inzhenernyj zhurnal: nauka i innovacii" MGTU im. Baumana [El. Sc.-Techn. Publ. "Eng. J.: Science and Innovation" of Bauman MSTU], 2013, no. 7(19). Available at: URL: http://engjournal.ru/catalog/machin/rocket/854.html (in Russ.).
[8] Khazhinskiy G.M. Deformirovanie. Razrushenie. Nadezhnost’. Zadachi deformirovaniya i razrusheniya stali. Metody otsenki prochnosti energeticheskogo oborudovaniya i truboprovodov [Deformation. Fracture. Reliability. Problems of Deformation and Fracture of Steel. Methods for Assessing the Strength of Power Equipment and Pipelines.]. Moscow, Editorial URSS Publ., 2014. 544 p.
[9] Zarubin V.S., Kuvyrkin G.N. Matematicheskie modeli mekhaniki i elektrodinamiki sploshnoy sredy [Mathematical Models of Continuum Mechanics and Electrodynamics]. Moscow MGTU im. N.E. Baumana Publ., 2008. 512 p.
[10] Ostrosablin N.I. Anizotropiya i obshchie resheniya uravneniy lineynoy teorii uprugosti [Anisotropy and general solutions of linear elasticity theory]. Diss. dokt. tekhn. nauk [Dr. tehn. sci. diss.]. Tula, 2000. 215 p.
[11] Dimitrienko Yu.I. Nelineynaya mekhanika sploshnoy sredy [Nonlinear mechanics of continuum]. Moscow, Fizmatlit Publ., 2009. 624 p.
[12] Dimitrienko Yu.I. Tenzornyy analiz. T. 1. Mekhanika sploshnoy sredy [Tensor analysis. Vol. 1. Continuum mechanics. Moscow, MGTU im. N.E. Baumana Publ., 2011.463 p.
[13] Bozhanov P.V. Zadachi plasticheskogo deformirovaniya tonkikh plastinok iz dilatiruyushchikh raznosoprotivlyayushchikhsya materialov [Problems of plastic deformation of thin plates of dilatant materials with multimodal resistance]. Diss. kand. tekhn. nauk [Cand. tehn. sci. diss.]. Tula, 2004. 233 p.
[14] Potapova L.B., Yartsev V.P. Mekhanika materialov pri slozhnom napryazhennom sostoyanii [Mechanics of materials in the complex stressed state]. Moscow, Mashinostroenie Publ., 2005. 244 p.
[15] Kovrizhnykh A.M. Plane stress equations for the Von Mises-Schleicher yield criterion. Prikl. Mat. i Mekh. [J. Appl. Math. Mech.], 2004, vol. 45, no. 6, pp. 144-153 (in Russ.).
[16] Treshchev A.A. Variant podkhoda k postroeniyu opredelyayushchikh sootnosheniy raznosoprotivlyayushchikhsya materialov i ispol’zovanie ego pri raschete elementov konstruktsiy [Version of approach to obtain the defining relationships for materials with multimodal resistance, and application of this approach for designing the construction elements]. Diss. dokt. tekhn. nauk [Dr. tehn. sci. diss.]. Tula, 1995. 501 p.