|

Numerical analysis of high density alloys and elongated projectiles’ velocity and strength effect on their penetration into a steel target

Authors: Fedorov S.V., Veldanov V.A., Smirnov V.E. Published: 09.02.2015
Published in issue: #1(100)/2015  

DOI: 10.18698/0236-3941-2015-1-65-83

 
Category: Mechanics | Chapter: Mechanics of Deformable Solid Body  
Keywords: numerical simulation, elongated projectile, heavy alloy, steel target, high velocity penetration, hydrodynamic mode

The paper considers the impact of velocity and material strength of the elongated projectiles made of high-density alloy on their penetration into a semi-infinite steel target. The numerical simulation of a two-dimensional axisymmetric problem of the continuum mechanics is provided. Projectile velocity is in the range from 1400 to 2000 mps and corresponds to the hydrodynamic mode of interaction with reduction of the projectile length during the penetration process as a result of its material spreading. The calculations are made with the help of the developed free Lagrangian points computational algorithm, which allows us to simulate material response under the conditions of explosive and shock loading. It was found out that dependence of the projectile penetration on the projectile material yield strength is nonmonotonic and has an extremum corresponding to penetration depth maximum. While projectile velocity is increasing the extremum is getting less defined and is shifting towards higher values of the yield strength.

References

[1] Babkin A.V., Kolpakov V.I., Okhitin V.N., Selivanov V.V. Prikladnaya mekhanika sploshnykh sred. V 3 t. T. 3. Chislennye metody v zadachakh fiziki vzryva i udara [Applied continuum mechanics. In 3 vol. Vol. 3. Numerical methods in problems of physics of explosion and shock]. Moscow, MGTU im. N.E. Baumana Publ., 2000. 516 p.

[2] Sagomonyan A.Ya. Pronikanie [Penetration]. Moscow, MGU Publ., 1974. 300p.

[3] Fomin V.M., Gulidov A.I., Sapozhnikov G.A. Vysokoskorostnoe vzaimodeystvie tel [High-speed interaction of bodies]. Novosibirsk, Izd. SO RAN Publ., 1999. 600 p.

[4] Alekseevskiy V.P. On the penetration of the rod into the target at high velocity. Fiz. Goreniya Vzryva [Combust., Explos., Shock Waves], 1966, vol. 2, no. 2, pp. 99-106 (in Russ.).

[5] Tate A. A theory for the deceleration of long rods after impact. J. Mech. Phys. Solids, 1967, vol. 15, no. 6, pp. 387-399.

[6] Wilkins M.L. Alder B., Fernbach S., Retenberg M., eds. Calculation of elastic-plastic flow, methods of computational physics. New York, Academic Press, 1964. (Russ. Ed.: Uilkins M.L. Raschet uprugoplasticheskikh techeniy: Vychislitel’nye metody v gidrodinamike. Per. s angl. Moscow, Mir Publ., 1967, pp. 212-263.).

[7] Oran E.S., Boris J.P. Numerical simulation of reactive flow. 2nd Ed. Cambridge Uni. Press, Naval Research Laboratory Publ., 2001. 522p. (Russ. Ed.: Oran E., Boris Dzh. Chislennoe modelirovanie reagiruyushchikh potokov. Per. s angl. Moscow, Mir Publ., 1990. 660p.).

[8] Fedorov S.V. On the possibility of "cutoff" of the leading high-velocity portion of the metal jet in the explosion of a shaped charge in the axial magnetic field. Boepripasy i vysokoenergeticheskie kondensirovannye sistemy [Explosives and high energy condensed system], 2008, no. 2, pp. 73-80 (in Russ.).

[9] Veldanov V.A., Markov V.A., Pusev V.I., Ruchko A.M., Sotskiy M.Yu., Fedorov S.V. Computation of nondeformable striker penetration into low-strength obstacles using piezoelectric accelerometry data. Zh. Tekh. Fiz. [Tech. Phys. The Russ. J. Appl. Phys.], 2011, vol. 56, iss. 7, pp. 94-104 (in Russ.).

[10] Fedorov S.V., Veldanov V.A. Numerical simulation of cavity formation in soil by a flux of high-speed metallic penetrators. Zh. Tekh. Fiz. [Tech. Phys. The Russ. J. Appl. Phys.], 2006, vol. 76, iss. 7, pp. 134-137 (in Russ.).

[11] Fedorov S.V. By definition the penetration depth of mushy projectiles at hypervelocity interaction. Zh. Tekh. Fiz. [Tech. Phys. The Russ. J. Appl. Phys.], 2007, vol. 77, iss. 10, pp. 131-134 (in Russ.).

[12] Fedorov S.V., Veldanov V.A. Determining of the dimension of a cavity in water behind a fast-moving cylindrical body. Zh. Tekh. Fiz. [Tech. Phys. The Russ. J. Appl. Phys.], 2013, vol. 83, iss. 2, pp. 15-20 (in Russ.).

[13] Magness L.S., Kapoor D. Tungsten composite materials with alternative matrices for ballistic applications. Proc. of the Fifth Intern. Conf on Tungsten: "Hard Metals and Refractory Alloys ". Princeton, New Jersey, 2000, pp. 15-23.

[14] Povarova K.B., Makarov P.V., Ratner A.D., Zavarzina E.K., Volkov K.V. VNZh-90 type heavy alloys. 1. Effect of alloying and conditions of tungsten powders production of structure and properties of sintered alloys. Metally [Russ. Metall. (Engl. Transl.)], 2002, no. 4, pp. 39-48 (in Russ.).

[15] Zlatin N.A. O roli szhimaemosti v protsesse dinamicheskogo deformirovaniya plastichnykh tel. Nekotorye problemy prochnosti tverdogo tela [On the role of compressibility in the process of dynamic deformation of plastic bodies. In book "Some problems of the strength of solids"]. Moscow-Leningrad, AN SSSR Publ., 1959, pp. 222-229.

[16] Fedorov S.V., Bayanova Ya.M. Penetration of long strikers under hydrodynamic conditions with allowance for the material compressibility. Zh. Tekh. Fiz. [Tech. Phys. The Russ. J. Appl. Phys.], 2011, vol. 56, iss. 9, pp. 45-51 (in Russ.).

[17] Nigmatulin R.I. Dinamika mnogofaznykh sred [Dynamics of multiphase media. Pt. 1]. Moscow, Nauka Publ., 1987. 464p.

[18] Zhernokletov M.V., eds. Metody issledovaniya svoystv materialov pri intensivnykh dinamicheskikh nagruzkakh [Methods for studying the properties of materials under intense dynamic loads]. Sarov, FGUP "RFYaTs-VNIIEF" Publ., 2005. 428 p.

[19] Kinslow R. (Ed.), High velocity impact phenomena. New York, Academic Press, 1970. 529p. (Russ. Ed.: Nikolaevskiy V.N. ed. Vysokoskorostnye udarnye yavleniya. Per. s angl. Moscow, Mir Publ., 1973. 538 p.).