Alternative Model of Isotropic Material with Different Modulus

Authors: Pakhomov B.M. Published: 05.12.2017
Published in issue: #6(117)/2017  

DOI: 10.18698/0236-3941-2017-6-35-48

Category: Mechanics | Chapter: Mechanics of Deformable Solid Body  
Keywords: different modulus of elasticity under strain and compression, generalized stiffness decomposition, defining relationships, model of deformation

The study suggests a model of isotropic heterogeneous material (isotropic material with different modulus of elasticity in different directions). In this model the defining relations are built by analogy with the different-modular theory of elasticity developed by S.A. Ambartsumyan. The approach is based on the generalized stiffness decomposition, which determines the presence of bonds between different directions of deformation. This makes it possible to deal with the uncertainty when choosing the coefficients in the equations relating stresses and deformations in the case of a complex stress-strain state. Signs of longitudinal deformations are taken as criteria. Some limitations on the technical characteristics of isotropic, different-modular materials --- elastic modulus and coefficients of transverse strain for tension and compression result from the proposed relationships. The given model helps process experimental data on graphites, and the study gives the results of the processing obtained for some types of stress-strain state under proportional loading


[1] Golovin N.N., Kuvyrkin G.N. Numerical modeling of carbon/carbon composites with nanotextured matrix and 3D pores of irregular shapes. International Journal of Solids and Structures, 2011, vol. 48, no. 18, pp. 2447–2457. DOI: 1016/j.ijsolstr.2011.04.021 Available at: http://www.sciencedirect.com/science/article/pii/S0020768311001740

[2] Komkov K.F. Peculiarities of elastic properties of highly filled polymer materials. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2008, no. 3, pp. 3–13 (in Russ.).

[3] Bozhanov P.V. Zadachi deformirovaniya tonkikh plastinok iz dilatiruyushchikh raznosoprotivlyayushchikhsya materialov: diss. kand. tekhn. nauk [Deformation problems of thin films made of multimodulus dilatant materials: kand. tech. sci. diss.]. Tula, TulPI Publ., 2002. 233 p.

[4] Pakhomov B.M. The plastic flow condition including the Poissons ratio. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2014, no. 2, pp. 15–27 (in Russ.).

[5] Pakhomov B.M. Application of intrinsic strains theory to definition of metals and alloys non-linear deformation. Inzhenernyy zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation], 2013, no. 7 (in Russ.). DOI: 10.18698/2308-6033-2013-7-854 Available at: http://engjournal.ru/catalog/machin/rocket/854.html

[6] Ambartsumyan S.A. Raznomodulnaya teoriya uprugosti [Multimodulus elasticity theory]. Moscow, Nauka Publ., 1982. 320 p.

[7] Sarkisyan M.S. On elasticity theory relations for isotropic bodies, material of which has different resistance to tensile and compression. Izvestiya AN SSSR. MTT, 1987, no. 5, pp. 87–94 (in Russ.).

[8] Dimitrienko Yu.I. Mekhanika sploshnoy sredy: T. 1. Tenzornyy analiz [Continuum mechanics. Vol. 1. Tensor analysis]. Moscow, Bauman MSTU Publ., 2011. 463 p.

[9] Anin B.D., Ostrosablin N.I. Anisotropy of elastic properties of materials. Journal of Applied Mechanics and Technical Physics, 2008, vol. 49, no. 6, pp. 998–1014. DOI: 10.1007/s10808-008-0124-1 Available at: https://link.springer.com/article/10.1007/s10808-008-0124-1

[10] Markin A.A., Sokolova M.Yu., Khristich D.V. A.A. Ilyushins postulate for anisotropic materials and a version of constitutive relations. Mechanics of Solids, 2011, vol. 46, no. 1, art. 30. DOI: 10.3103/S0025654411010055 Available at: https://link.springer.com/article/10.3103/S0025654411010055?no-access=true

[11] Bessonov D.E., Zezin Yu.P., Lomakin E.V. Multimodulus behаvior of the grained composites on the base of unsaturated polyetheres. Izvestiya Saratovskogo universiteta. Ser. Matematika. Mekhanika. Informatika [Izvestiya of Saratov University. New Series. Ser.: Mathematics. Mechanics. Informatics], 2009, vol. 9, no. 4-2, pp. 9–13 (in Russ.).

[12] Bessonov D.E., Ershova A.Yu., Zezin Yu.P., Martirosov M.I., Rybinskiy L.N. Experimental research on deformation and destruction of grain composites based on polyester resins. Mekhanika kompozitsionnykh materialov i konstruktsiy, 2008, vol. 14, no. 1, pp. 111–125 (in Russ.).

[13] Strokov V.I., Barabanov V.N. Research method for graphite structural and deformation behavior under combined stress. Zavodskaya laboratoriya [Industrial laboratory. Materials diagnostics], 1974, no. 9, pp. 1141–1144 (in Russ.).

[14] Berezin A.V., Strokov V.I., Barabanov V.N. Deformiruemost i razrushenie izotropnykh grafitovykh materialov [Deformability and destruction of isotropic graphite materials]. Konstruktsionnye materialy na osnove ugleroda. Vyp. I [Carbon construction materials. Iss. I]. Moscow, Metallurgiya Publ., 1976, pp. 102–110.