|

Analysis of Anti Shaped-Charge Resistance of Electrodynamic Protection with Implementation of "Shutdown" of Energy Capacitive Storage

Authors: Fedorov S.V., Bolotina I.A., Strukov Yu.A. Published: 03.08.2017
Published in issue: #4(115)/2017  

DOI: 10.18698/0236-3941-2017-4-42-64

 
Category: Mechanics | Chapter: Mechanics of Deformable Solid Body  
Keywords: explosion, shaped-charge jet, penetration depth, electrical current pulse, electrodynamic protection, energy capacitive storage "shutdown", discharge circuit

To increase the efficiency of metal shaped-charge jets destruction by electric current powerful pulse which is created by electrodynamic protection system, we offer to use the energy capacitive storage "shutdown" at the moment when its voltage becomes equal to zero in case of implementing the discharge periodic mode. As a result of an excluding the capacitive storage recharging, we provided a better agreement between the law of current change in discharge circuit and the time of motion of shaped-charge jet various parts through an interelectrode interval owing. We conducted the studies based on computational procedure. Meanwhile, we considered the development of necking-type magnetohydrodynamic instability of shaped-charge jet and its material dispergation with radial dispersion as possible physical mechanisms of reducing the penetration capability of shaped-charge jets under the powerful electrodynamic action. We carried out the comparative analysis of anti shaped-charge resistance of electrodynamic protection with "shutdown" and without "shutdown" of the capacitive storage in relation to a shaped charge of diameter about 90 mm with penetration depth in a homogeneous steel target 550...600 mm. Findings of the research show that use of the capacitive storage "shutdown" allows us at the fixed value of its energy to reduce the residual depth of shaped-charge jet penetration into a target. At the same time the effect of shaped charge penetrability reduction which is reached due to the capacitive storage "shutdown" depends on parameters of a discharge circuit.

References

[1] Walters W.P., Zukas J.A. Fundamentals of shaped charges. New York, Wiley, 1989. 398 p.

[2] Orlenko L.P., ed. Fizika vzryva. V 2 t. T. 2 [Physics of explosion. In 2 vols. Vol. 2]. Moscow, Fizmatlit Publ., 2004. 656 p.

[3] Fedorov S.V., Babkin A.V., Ladov S.V. Influence of the magnetic field produced in the liner of a shaped charge on its penetrability. Combustion, Explosion and Shock Waves, 1999, vol. 35, no. 5, pp. 598-599. DOI: 10.1007/BF02674508 Available at: http://link.springer.com/article/10.1007/BF02674508

[4] Fedorov S.V., Babkin A.V., Ladov S.V. Magnetic comulative effect upon the explosion of a shaped charge with an axial magnetic field in its sheath. Technical Physics, 2003, vol. 48, no. 8, pp. 1047-1052. DOI: 10.1134/1.1607479 Available at: http://link.springer.com/article/10.1134/1.1607479

[5] Fedorov S.V. On cut-off possibility of the leading high velocity part of metal jet during shaped-charge explosion in axial magnetic field. Boepripasy i vysokoenergeticheskie kondensirovannye sistemy, 2008, no. 2, pp. 73-80 (in Russ.).

[6] Fedorov S.V., Babkin A.V., Ladov S.V., Shvetsov G.A., Matrosov A.D. On the possibility of reducing the penetration capability of shaped-charge jets in a magnetic field. Journal of Applied Mechanics and Technical Physics, 2007, vol. 48, no. 3, pp. 393-400. DOI: 10.1007/s10808-007-0049-0 Available at: http://link.springer.com/article/10.1007/s10808-007-0049-0

[7] Fedorov S.V., Babkin A.V., Ladov S.V. Salient features of inertial stretching of a high-gradient conducting rod in a longitudinal low-frequency magnetic field. Journal of Engineering Physics and Thermophysics, 2001, vol. 74, no. 2, pp. 364-374. DOI: 10.1023/A:1016656522643 Available at: http://link.springer.com/article/10.1023/A%3A1016656522643

[8] Babkin A.V., Ladov S.V., Marinin V.M., Fedorov S.V. Numerical modelling and the physical pattern of deformation and destruction of metalic jets producted by shaped-charges. Russian Journal of Physical Chemistry B, 2000, vol. 18, no. 10-11, pp. 1805-1822.

[9] Fedorov S.V., Bolotina I.A. Magnetic pulsing compression of high-speed metal elements created by an explosion in free flight. Nauka i obrazovanie: nauchnoe izdanie MGTU im. N.E. Baumana [Science and Education: Scientific Publication of BMSTU], 2012, no. 12, pp. 183-196 (in Russ.). DOI: 10.7463/1212.0496555 Available at: http://technomag.bmstu.ru/doc/496555.html

[10] Fedorov S.V. Magnetic-field amplification in metal shaped-charge jets during their inertial elongation. Combustion, Explosion and Shock Waves, 2005, vol. 41, no. 1, pp. 106-113. DOI: 10.1007/s10573-005-0012-4 Available at:http://link.springer.com/article/10.1007/s10573-005-0012-4

[11] Shvetsov G.A., Matrosov A.D., Babkin A.V., Ladov S.V., Fedorov S.V. Behavior of metallic shaped-charge jets with passage of a pulsed electric current through them. Journal of Applied Mechanics and Technical Physics, 2000, vol. 41, no. 3, pp. 394-400. DOI: 10.1007/BF02465287 Available at: http://link.springer.com/article/10.1007/BF02465287

[12] Fedorov S.V., Babkin A.V., Kolpakov V.I. Possibility of generating strong magnetic fields in conducting materials by the action of high-velocity penetrators. Journal of Applied Mechanics and Technical Physics, 2000, vol. 41, no. 3, pp. 389-393. DOI: 10.1007/BF02465286 Available at: http://link.springer.com/article/10.1007/BF02465286

[13] Fedorov S.V., Babkin A.V., Demidkov S.V. Enhancement of a magnetic field in a perfectly conducting medium on penetration of a high-velocity jet into it. Journal of Engineering Physics and Thermophysics, 2000, vol. 73, no. 6, pp. 1226-1235. DOI: 10.1023/A:1009490708904 Available at: http://link.springer.com/article/10.1023/A%3A1009490708904

[14] Fedorov S.V., Kolpakov V.I., Babkin A.V. Penetration of plane shaped-charge jet into ideally conducting obstruction with transversal magnetic field. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2000, no. 2, pp. 80-92.

[15] Fedorov S.V. Generation of a magnetic field in the shear deformation region of a conducting material upon high-velocity penetration. Journal of Applied Mechanics and Technical Physics, 2001, vol. 42, no. 3, pp. 397-403. DOI: 10.1023/A:1019230200796 Available at: http://link.springer.com/article/10.1023/A%3A1019230200796

[16] Fedorov S.V., Babkin A.V. Generation of magnetic field during shearing motion of a conducting viscous medium. Journal of Experimental and Theoretical Physics, 2002, vol. 95, no. 2, pp. 266-274. DOI: 10.1134/1.1506434 Available at: http://link.springer.com/article/10.1134/1.1506434

[17] Pollock C.E. Electromagnetic effect of the natural hydrodynamic instability of stretching, high velocity, metallic jets. Megagauss Magnetic Field Generation and Pulsed Power Applications. New York, Nova Sci. Publ., 1994, pp. 309-316.

[18] Pavlovskiy A.I., Plyashkevich L.N., Shuvalov A.M., Brodskiy A.Ya. Experimental research of shaped-charge jet disruption by the current pulse. Zhurnal tekhnicheskoy fiziki, 1994, vol. 64, no. 2, pp. 76-82 (in Russ.). Available at: http://journals.ioffe.ru/articles/18637

[19] Pavlovskiy A.I., Plyashkevich L.N., Shuvalov A.M., Brodskiy A.Ya. Research on some features of the shaped-charge jet disruption process in a strong-flow mode. Zhurnal tekhnicheskoy fiziki, 1994, vol. 64, no. 5, pp. 43-48 (in Russ.). Available at: http://journals.ioffe.ru/articles/18705

[20] Matrosov A.D., Shvetsov G.A. Experimental investigation of current instability of shaped-charge jets. Journal of Applied Mechanics and Technical Physics, 1996, vol. 37, no. 4, pp. 464-469. DOI: 10.1007/BF02369716 Available at: http://link.springer.com/article/10.1007/BF02369716

[21] Plyashkevich L.N., Shuvalov A.M., Spirov G.M., Brodskiy A.Ya., Dimant E.M., Luk’yanov N.B., Makaev B.S., Rep’yev A.G., Gaydash S.V., Zaytsev A.S. Disruption of shaped-charge jets by a current. Combustion, Explosion and Shock Waves, 2002, vol. 38, no. 5, pp. 602-605. DOI: 10.1023/A:1020355021586 Available at: http://link.springer.com/article/10.1023%2FA%3A1020355021586

[22] Shvetsov G.A., Matrosov A.D., Fedorov S.V., Babkin A.V., Ladov S.V. Effect of external magnetic fields on shaped-charge operation. International Journal of Impact Engineering, 2011, vol. 38, no. 6, pp. 521-526. DOI: 10.1016/j.ijimpeng.2010.10.024 Available at: http://www.sciencedirect.com/science/article/pii/S0734743X10001703

[23] Grigoryan V.A., ed. Zashchita tankov [Protection for tanks]. Moscow, Bauman MSTU Publ., 2007. 327 p.

[24] Ogorkiewicz R.M. Future tank armors revealed. Janes Int. Defense Review, 1997, no. 5, pp. 50-51.

[25] Babkin A.V., Ladov S.V., Fedorov S.V. Electrical protection advanced technology combat vehicle of the XXI century. Oboronnaya tekhnika, 2000, no. 1-2, pp. 19-25.

[26] Fedorov S.V. Electrodynamic protection against shaped-charge weapons. Physical aspects of functioning. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mech. Eng.], 2014, no. 3, pp. 79-100.

[27] Fedorov S.V. Electrodynamic protection against shaped-charge weapons. Prospects of practical implementation. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mech. Eng.], 2014, no. 4, pp. 12-32.

[28] Fedorov S.V., Babkin A.V., Ladov S.V., Shvetsov G.A., Matrosov A.D. Prediction of the penetrating power of metallic shaped charge jets subjected to an intense electric current pulse. Technical Physics, 2003, vol. 48, no. 7, pp. 829-836. DOI: 10.1134/1.1593187 Available at: http://link.springer.com/article/10.1134/1.1593187

[29] Littlefield D.L., Powell J.D. The effect of electromagnetic fields on the stability of a uniformly elongating plastic jet. Physics of Fluids A, 1990, vol. 2, no. 12, pp. 2240-2248.

[30] Littlefield D.L. Finite conductivity effects on the MHD instabilities in uniformly elongating plastic jets. Physics of Fluids A, 1991, vol. 3, no. 6, pp. 1666-1673.

[31] Fedorov S.V., Babkin A.V., Ladov S.V. Formation of magnetohydrodynamic instability of the shaped-charge jet exposing electrodynamic impact. Oboronnaya tekhnika, 1998, no. 1-2, pp. 49-56 (in Russ.).

[32] Babkin A.V., Kolychev M.E., Ladov S.V., Fedorov S.V. On probable mechanism of shaped-charge jet disruption by a current pulse. Oboronnaya tekhnika, 1995, no. 4, pp. 47-54 (in Russ.).

[33] Babkin A.V., Ladov S.V., Marinin V.M., Fedorov S.V. Effect of shaped-charge jet compressibility and strength on the characteristics of their intertial stretching in free flight. Journal of Applied Mechanics and Technical Physics, 1997, vol. 38, no. 2, pp. 177-184. DOI: 10.1007/BF02467898 Available at: http://link.springer.com/article/10.1007/BF02467898

[34] Appelgren P., Skoglund M., Lundberg P., Westerling L., Larsson A., Hurtig T. Experimental study of electromagnetic effects on solid copper jets. Journal of Applied Mechanics, 2010, vol. 77, no. 1, pp. 1-7. DOI: 10.1115/1.3172251 Available at: http://appliedmechanics.asmedigitalcollection.asme.org/article.aspx?articleid=1420573

[35] Fedorov S.V. On the scattering of a metallic shaped-charge jet with an intense electric current pulse passing through it. Technical Physics, 2012, vol. 57, no. 10, pp. 1341-1352. DOI: 10.1134/S1063784212100052 Available at: http://link.springer.com/article/10.1134/S1063784212100052

[36] Selivanov V.V., ed. Sredstva porazheniya i boepripasy [Destruction means and explosives]. Moscow, Bauman MSTU Publ., 2008. 984 p.

[37] Knopfel G. Pulsed high magnetic fields. Amsterdam, North-Holland Publ. Company, 1970. 373 p. (Russ. ed.: Sverkhsil’nye impul’snye magnitnye polya. Moscow, Mir Publ., 1972. 392 p.)

[38] Ford M.D., Dorr G.B., Toepfer A.J. Design and testing of a compact electromagnetic armor power system. Proc. of the 11th Annual US Army Ground Vehicle Survivability Symp. 2000.