|

Forecasting the Parachute Landing Parameters under Turbulent Atmosphere in a Problem of Designing the Air Drop Ground Tumper Systems

Authors: Averyanov I.O. Published: 22.01.2025
 

DOI:

 
Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Strength and Thermal Modes  
Keywords: air drop equipment, shock-absorbing device, landing parameters, object-parachute system, landing dynamics

Abstract

Selecting design parameters for the airdrop ground damper systems used in safe parachute landing of an object requires specifying initially parameters of the object landing. They include its position in space and velocity vector at starting the absorber device compression. Besides, it becomes necessary to identify dynamics of the object-parachute system motion exposed to the effect of the air masses atmospheric phenomena, such as wind, with its turbulent component, sometimes gusty, as well as the ascending and descending airflows. The paper proposes an approach that allows forecasting the object parachute landing parameters. A mathematical model of the object-parachute cargo system is developed making it possible to analyze dynamics of its spatial landing under non-stationary action of the air currents. Another mathematical model of the atmosphere is proposed combining the known turbulence models and the discrete statistical gusts. Solution to the problem of forecasting parameters of the object parachute landing is obtained by applying the Monte Carlo method that allows accounting for variability of the atmospheric effects on the object-parachute system dynamics and obtaining desired parameters in the interval distributions form. Operability of the proposed mathematical models and the results obtained reliability are confirmed by comparing them with results of known solutions and experiments

Please cite this article in English as:

Averyanov I.O. Forecasting the parachute landing parameters under turbulent atmosphere in a problem of designing the air drop ground tumper systems. Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering, 2024, no. 4 (151), pp. 4--27 (in Russ.). EDN: BNBPXS

References

[1] Antonenko A.I., Rysev O.V., Fatykhov F.F., et al. Dinamika dvizheniya parashyutnykh system [Dynamics of parachute systems motion]. Moscow, Mashinostroenie Publ., 1982.

[2] Rysev O.V., Vishnyak A.A., Churkin V.M., et al. Dinamika svyazannykh tel v zadachakh dvizheniya parashyutnykh system [Dynamics of connected bodies in the tasks of parachute systems movement]. Moscow, Mashinostroenie Publ., 1992.

[3] Lyalin V.V., Morozov V.I., Ponomarev A.T. Parashyutnye sistemy [Parachute systems]. Moscow, FIZMATLIT Publ., 2009.

[4] Ivanov P.I. Issledovanie parashyutnykh sistem i paraplanernykh letatelnykh apparatov [Study on parachute systems and paragliding flying machines]. Feodosiya, Art Layf Publ., 2022.

[5] Tutt B.А. Fluid structure interaction parachute benchmark models in LS-DYNA. AIAA ADS Conf., 2013, no. AIAA 2013-1384. DOI: https://doi.org/10.2514/6.2013-1384

[6] Stein K.R., Tezduyar T.E., Sathe S.S., et al. Fluid-structure interaction modeling of parachute soft-landing dynamics. Int. J. Nume. Methods Fluids, 2004, vol. 47, no. 6-7, pp. 619--631.

[7] Stein K.R., Tezduyar T.E., Vinod K., et al. Numerical simulation of soft landing for clusters of cargo parachutes. ECCOMAS, 2004. Available at: https://www.researchgate.net/publication/ 228858965_Numerical_simulation_of_soft_landing_for_clusters_of_cargo_parachutes (accessed: 15.06.2024).

[8] Ponomarev P.A., Skidanov S.N., Timokhin V.A. Increasing of air bags soft landing systems power-consuming by using of a breakable element. Trudy MAI, 2000, no. 2 (in Russ.). Available at: http://trudymai.ru/published.php?ID=34708

[9] Emelyanov Yu.N., Pavlov A.S., Titov V.A. Proektirovanie sistemy myagkoy posadki prizemlyayushchegosya obekta [Design of soft landing system]. Moscow, MAI Publ., 1988.

[10] Averyanov I.O. Prediction of dependability for soft landing system with air dampers with Monte Carlo method. Trudy MAI, 2020, no. 115 (in Russ.). DOI: https://doi.org/10.34759/trd-2020-115-03

[11] Ivanov P.I., Kurinnyy S.M., Krivorotov M.M. Parameters liable to be defined while a multi-dome parachute system flight-testing for its efficiency estimation. Vestnik MAI [Aerospace MAI Journal], 2020, vol. 27, no. 3, pp. 49--59 (in Russ.).DOI: https://doi.org/10.34759/vst-2020-3-49-59

[12] Sobol I.M. Metod Monte-Karlo [Monte-Carlo method]. Moscow, Nauka Publ., 1968.

[13] Averyanov I.O. Cargo with dampers parachute vertical landing dynamics research. Trudy MAI, 2022, no. 127 (in Russ.). DOI: https://doi.org/10.34759/trd-2022-127-02

[14] Averyanov I.O. Mathematical model of non-deformed cargo parachute landing system with dampers on rigid plane in case of stationary wind field. Trudy MAI, 2023, no. 131 (in Russ.). DOI: https://doi.org/10.34759/trd-2023-131-01

[15] Dobrolenskiy Yu.P. Dinamika poleta v nespokoynoy atmosphere [Dynamics of flight in disturbed atmosphere]. Moscow, Mashinostroenie Publ., 1969.

[16] Bobylev A.V. Defining of atmospheric turbulence distribution law with the solution of two-dimensional equilibrium by Fokker --- Planck --- Kolmogorov. Uchenye zapiski TsAGI, 1990, vol. XXI, no. 2, pp. 123--129 (in Russ.).

[17] Nguen Kh.M. Influence of wind impact on dynamics of ammunition motion being corrected. Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering, 2008, no. 3 (72), pp. 39--51 (in Russ.). EDN: JVQUDZ

[18] Shalygin A.S., Palagin Yu.I. Prikladnye metody statisticheskogo modelirovaniya [Applied methods of statistical modelling]. Leningrad, Mashinostroenie Publ., 1986.

[19] Sergienko A.B. Tsifrovaya obrabotka signalov [Digital signal processing]. St. Petersburg, Piter Publ., 2002.

[20] Sedunov Yu.S., Avdyushkin S.I., Borisenkov E.P., et al. Atmosfera [Atmosphere]. Leningrad, Gidrometeoizdat Publ., 1991.

[21] Gmurman V.E. Teoriya veroyatnostey i matematicheskaya statistika [Theory of probability and mathematical statistics]. Moscow, Vysshaya shkola Publ., 1972.