|

Computing Thermal Protection of the Soil-Sampling Mechanism Drive of the Venera-D Automatic Interplanetary Station Exposed to Extreme Operation Conditions

Authors: Koveshnikov A.A., Paleshkin A.V. Published: 18.09.2024
Published in issue: #3(150)/2024  

DOI:

 
Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Strength and Thermal Modes  
Keywords: thermal protection, Venera-D, thermodynamics, thermal insulation, heat accumulator, phase transition, mathematical model

Abstract

The paper proposes a method for ensuring thermal protection of the soil-sampling mechanism drive installed on the Venera-D mission descent module. Thermal protection design and development for the missions to Venus requires taking into account the systems harsh operation conditions on the planet surface, where atmospheric temperature is ~ 500 °C and pressure is ~ 100 atm. As the descent module sealed compartment is possibly lacking space, the drive should be installed outside the sealed compartment, which requires design and development of the drive thermal protection. The method for providing thermal protection lies in introducing a phase-change heat accumulator in the mechanism as a key element that counteracts the external heat flows. Computational experiment was conducted using a mathematical model, which resulted in selecting the most suitable of two materials for the heat accumulator and finding optimal parameters of the thermal protection geometry making it possible to ensure the system lowest mass. Design solution for the thermal protection was developed. It included electric motor witha gearbox surrounded by the heat accumulator internal layer and by external layer of the heat-protective material, and with an output shaft fixed by the radial thrust bearings installed in a cup. Two technical solutions in selecting material for the heat accumulator obtained as a result of a computation experiment were compared

Please cite this article in English as:

Koveshnikov A.A., Paleshkin A.V. Computing thermal protection of the soil-sampling mechanism drive of the Venera-D automatic interplanetary station exposed to extreme operation conditions. Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering, 2024, no. 3 (150), pp. 4--18 (in Russ.). EDN: WGLVOV

References

[1] Vorontsov V.A., Karchaev Kh.Zh., Martynov M.B., et al. Venus exploration program and international cooperation. Trudy MAI, 2016, no. 86 (in Russ.). Available at: https://trudymai.ru/published.php?ID=65702

[2] Huntress J.R., Marov M.Ya. Soviet robots in the Solar system. New York, Springer, 2011.

[3] Ksanfomaliti L.V. Planeta Venera [Planet Venus]. Moscow, Nauka Publ., 1985.

[4] Kuzmin A.D. Planeta Venera [Planet Venus]. Moscow, Nauka Publ., 1981.

[5] Phase I. Venera-D: expanding our horizon of terrestrial planet climate and geology through the comprehensive exploration of Venus. Final Report of the Joint Science Definition Team. Moscow, IKI RAS Publ., 2017.

[6] Zasova L.V., Gorinov D.A., Eysmont N.A., et al. Venera-D: a design of automatic space station for Venus exploration. Vestnik NPO im. S.A. Lavochkina, 2018, no. 3, pp. 13--17 (in Russ.). EDN: VKMNPS

[7] Borisenko A.V. Vybor khladagenta i optimizatsiya parametrov tsikla sistemy termostatirovaniya posadochnogo apparata "Venera-D". Molodezhnyy nauchno-tekhnicheskiy vestnik, 2015, no. 2, p. 10. EDN: TMNEFB

[8] Reid E. Long-term researcher of Venus. Kalamazoo, Western Michigan University, 2021. URL: https://scholarworks.wmich.edu/honors_theses/3384

[9] 17th meeting of the Venus Research Group. Lunar and Planetary Institute, 2019. lpi.usra.edu: website. Available at: https://www.lpi.usra.edu/vexag/meetings/vexag-17 (accessed: 24.06.2024).

[10] Venera-D: expanding our horizon of terrestrial planet climate and geology through the comprehensive exploration of Venus. Phase II Final Report of the Joint Science Definition Team. Moscow, IKI RAS Publ., 2017, pp. 1--93.

[11] Venera-D: expanding our horizon of terrestrial planet climate and geology through the comprehensive exploration of Venus. Final report of the Joint Science Definition Team. Moscow, IKI RAS Publ., 2019, pp. 1--174.

[12] Zasova L., Gregg T., Burdanov A., et al. Venera-D: expanding our horizon of terrestrial planet climate and geology through the comprehensive exploration of Venus. EPSC-DPS Joint Meeting, 2019, vol. 13, art. EPSC-DPS2019-1938-1.

[13] Dolgopolov V.P., Pichkhadze K.M., Sukhanov K.G. "Vega" project --- the space mission towards Venus and Halley comet. Vestnik NPO im. S.A. Lavochkina, 2011, no. 5, pp. 41--50 (in Russ.). EDN: OJNPLR

[14] Zelenyy L.M., ed. Venera-D. Soveshchanie po modelirovaniyu Venery [Venera-D. Venus modeling workshop]. Moscow, IKI RAS Publ., 2018.

[15] Bronshten V.A. Planeta Venera [Planet Venus]. Moscow, Znanie Publ., 1971.

[16] Kondratyev K.Ya., Krupenio N.N., Selivanov A.S. Planeta Venera [Planet Venus]. Leningrad, Gidrometeoizdat Publ., 1987.

[17] Kellogg W., Sagan K. The atmospheres of Mars and Venus. Washington, National Research Council, 1961.

[18] Izakov M.N. O globalnoy tsirkulyatsii atmosfery Venery [On global circulation of Venus atmosphere]. Moscow, IKI RAS Publ., 1989.

[19] Porshnev G.P. Proektirovanie sistem obespecheniya teplovogo rezhima robotov-planetokhodov. Dis. d-ra tekh. nauk [Designing of the systems of thermal regime support for robotic planetary vehicles. Dr. Sc. (Eng.). Diss.]. St. Petersburg, SPbPU, 1998 (in Russ.).

[20] Finchenko V.S., Kotlyarov E.Yu., Ivankov A.A. Sistemy obespecheniya teplovykh rezhimov avtomaticheskikh mezhplanetnykh stantsiy [Systems for providing thermal modes of automatic interplanetary stations]. Khimki, NPO im. S.A. Lavochkina Publ., 2018.