|

Estimating the Thermal State and Methodological Issues in Gas Dynamic Testing of Refractory Ceramic Samples

Authors: Tovstonog V.A., Tomak V.I., Burkov A.S. Published: 23.12.2020
Published in issue: #6(135)/2020  

DOI: 10.18698/0236-3941-2020-6-45-65

 
Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Strength and Thermal Modes  
Keywords: high-temperature gas flow, refractory ceramics, thermal state, physical simulation

Material selection for aerospace structural and power plant units subjected to thermal stresses is based on thorough investigation of their physical, mechanical and optical properties in a wide range of temperatures up to 2500--3000 K, which are in practice the highest possible. However, it is exceptionally difficult and expensive to obtain the whole extent of data on the properties of structural and refractive materials currently in development that is required to analytically estimate the thermal state and performance of the structures designed to be subjected to thermal stresses. Moreover, the theoretical thermal state models in use are most often based on a number of assumptions, which means that they will need to be validated against experimental investigation data. As a result, integral methods of estimating material performance under intended real-world thermal and force loads become highly important. Ground-based development testing using simulation installations will solve this problem. While testing, it is important to ensure that the simulated thermal modes of the object being tested match its real-world thermal modes. The paper considers these issues regarding estimating refractory ceramics performance subjected to a high-temperature gas flow

References

[1] Cichosz E. Rozwуj samolotуw naddzwiekowych. Warszawa, Wydawnictwa Komunikacji i Lacznosci, 1980.

[2] Kleb W.L., Wood W.A., Gnoffo P.A., et al. Computational aeroheating predictions for X-34. J. Spacecr. Rockets, 1999, vol. 36, no. 2, pp. 179--188. DOI: https://doi.org/10.2514/2.3448

[3] Milos F.S., Squire T.H. Thermostructural analysis of X-34 wing leading-edge tile thermal protection system. J. Spacecr. Rockets, vol. 36, no. 2, pp. 189--198. DOI: https://doi.org/10.2514/2.3449

[4] Kuchemann D. The aerodynamic design of aircraft. Pregamon Press, 1978.

[5] Gorskiy V.V., ed. Matematicheskoe modelirovanie teplovykh i gazodinamicheskikh protsessov pri proektirovanii letatel’nykh apparatov [Mathematical modelling of thermal and gas-dynamic processes at aircraft design]. Moscow, Bauman MSTU Publ., 2011.

[6] Polezhaev Yu.V., Shishkov A.A. Gaczodinamicheskie ispytaniya teplovoy zashchity [Gas-dynamic tests of thermal protection]. Moscow, Promedek Publ., 1992.

[7] TsAGI im. N.E. Zhukovskogo. Eksperimental’naya baza [Central Aerohydrodynamic Institute. Experimental base]. tsagi.ru: website (in Russ.).Available at: http://www.tsagi.ru/experimental_base (accessed: 15.02.2020).

[8] FGUP "Issledovatel’skiy tsentr imeni M.V. Keldysha" [FGUP Eesearch center n.a. Keldysh M.V.]: website (in Russ.). Available at: http://kerc.msk.ru (accessed: 15.02.2020).

[9] ITPM im. S.A. Khristianovicha SO RAN. Eksperimental’naya baza [Khristianovich Institute of Theoretical and Applied Mechanics SB RAS. Experimental base]. itam.nsc.ru: webiste (in Russ.). Available at: http://itam.nsc.ru/science/facilities.html (accessed: 15.02.2020).

[10] Zemlyanskiy B.A., ed. Konvektivnyy teploobmen letatel’nykh apparatov [Convective heat transfer in aircraft]. Moscow, FIZMATLIT Publ., 2014.

[11] Gorskiy V.V., Gordeev A.N., Dmitrieva A.A., et al. HF-Plasmоtron IPG-4 in IPMech RAS as an instrument for determination of kinetics of heterogeneous chemical reactions on the surface of carbon material. Fiziko-khimicheskaya kinetika v gazovoy dinamike [Physical-Chemical Kinetics in Gas Dynamics], 2017, vol. 18, no. 2 (in Russ.). Available at: http://chemphys.edu.ru/issues/2017-18-2/articles/736

[12] Kolesnikov A.F., Gordeev A.N., Vasil’yevskiy S.A., et al. Heat transfer in nonequilibrium dissociated nitrogen jets: experiments in RF-plasmatron and numerical modeling. Fiziko-khimicheskaya kinetika v gazovoy dinamike [Physical-Chemical Kinetics in Gas Dynamics], 2016, vol. 17, no. 2 (in Russ.). Available at: http://chemphys.edu.ru/issues/2016-17-2/articles/637

[13] Sokolov P.S., Arakcheev A.V., Mikhal’chik I.L., et al. Ultra-high temperature HfB2--30 % SiC ceramics: preparation and general properties. Novye ogneupory [New Refractories], 2017, no. 5, pp. 48--55 (in Russ.). DOI: https://doi.org/10.17073/1683-4518-2017-5-48-55

[14] Pryamilova E.N., Poylov V.Z., Lyamin Yu.B. Thermochemical stability of the ceramics based on zirconium and hafnium borides. Vestnik PNIPU. Khimicheskaya tekhnologiya i biotekhnologiya [PNRPU Bulletin. Chemical Technology and Biotechnology], 2014, no. 4, pp. 55--67 (in Russ.).

[15] Grashchenkov D.V., Sorokin O.Yu., Lebedeva Yu.E., et al. Specific features of sintering of HfB2-based refractory ceramic by hybrid spark plasma sintering. Russ. J. Appl. Chem., 2015, vol. 88, pp. 386--393. DOI: https://doi.org/10.1134/S1070427215030040

[16] Simonenko E.P., Simonenko N.P., Sevast’yanov V.G., et al. Preparation of HfB2/SiC composite powders by sol--gel technology. Russ. J. Inorg. Chem., 2016, vol. 61, no. 12, pp. 1483--1498. DOI: https://doi.org/10.1134/S0036023616120172

[17] Sevast’yanov V.G., Simonenko E.P., Gordeev A.N., et al. Production of ultrahigh temperature composite materials HfB2--SiC and the study of their behavior under the action of a dissociated air flow. Russ. J. Inorg. Chem., 2013, vol. 58, no. 11, pp. 1269--1276. DOI: https://doi.org/10.1134/S003602361311017X

[18] Sevast’yanov V.G., Simonenko E.P., Gordeev A.N., et al. HfB2--SiC (45 vol. %) ceramic material: manufacture and behavior under long-term exposure to dissociated air jet flow. Russ. J. Inorg. Chem., 2014, vol. 59, no. 11, pp. 1298--1311. DOI: https://doi.org/10.1134/S0036023614110217

[19] Sevast’yanov V.G., Simonenko E.P., Gordeev A.N., et al. HfB2--SiC (10--20 vol. %) ceramic materials: manufacture and behavior under long-term exposure to dissociated air streams. Russ. J. Inorg. Chem., 2014, vol. 59, no. 12, pp. 1361--1382. DOI: https://doi.org/10.1134/S0036023614120250

[20] Simonenko E.P., Gordeev A.N., Simonenko N.P., et al. Behavior of HfB2--SiC (10, 15 and 20 vol. %) ceramic materials in high-enthalpy air flows. Russ. J. Inorg. Chem., 2016, vol. 61, no. 10, pp. 1203--1218. DOI: https://doi.org/10.1007/s10971-019-05029-9

[21] Krzhizhanovskiy R.E., Shtern Z.Yu. Teplofizicheskie svoystva nemetallicheskikh materialov (karbidy) [Thermal physical properties of non-metal materials (carbides)]. Leningrad, Energiya Publ., 1973.

[22] Samsonov G.V., Vinitskiy I.M. Tugoplavkie soedineniya [High-melting compounds]. Moscow, Metallurgiya Publ., 1976.

[23] Samsonov G.V., Serebryakova V.I., Neronov V.A. Boridy [Borides]. Moscow, Atomizdat Publ., 1975.

[24] Sheyndlin A.E., ed. Izluchatel’nye svoystva tverdykh materialov [Emission properties of solids]. Moscow, Energiya Publ., 1974.

[25] Arzhanikov N.S., Sadekova G.S. Aerodinamika bolʼshikh skorostey [Aerodynamics of high velocities]. Moscow, Vysshaya shkola Publ., 1965.

[26] Belov G.V., Trusov B.G. Termodinamicheskoe modelirovanie khimicheski reagiruyushchikh sistem [Thermodynamic modelling of chemically reacting systems]. Moscow, Bauman MSTU Publ., 2013.

[27] Belov G.V. Termodinamicheskoe modelirovanie: metody, algoritmy, programmy [Thermodynamic modelling: methods, algorithms, programs]. Moscow, Nauchnyy mir Publ., 2002.

[28] Alemasov V.E., Dregalin A.F., Tishin A.P. Teoriya raketnykh dvigateley [Theory of rocket engines]. Moscow, Mashinostroenie Publ., 1969.

[29] Kolesnikov A.F. Local similarity conditions of the thermochemical interaction between high-enthalpy gas flows and an indestructible surface. High Temp., 2014, vol. 52, no. 1, pp. 110--116. DOI: https://doi.org/10.1134/S0018151X13060151

[30] Vasil’yevskiy S.A., Gordeev A.N., Kolesnikov A.F. Local modeling of the aerodynamic heating of the blunt body surface in subsonic high-enthalpy air flow. Theory and experiment on a high-frequency plasmоtron. Fluid Dyn., 2017, vol. 52, no. 1, pp. 158--164. DOI: https://doi.org/10.1134/S001546281701015X