Method for Computational Estimation of Frost Resistance in Aircraft Paint Coatings

Authors: Aliyev A.A., Аmpilogov A.Yu. Published: 06.06.2020
Published in issue: #3(132)/2020  

DOI: 10.18698/0236-3941-2020-3-4-17

Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Strength and Thermal Modes  
Keywords: ice accretion, coating, microre-lief, fatigue, computation, frost resistance, fracturing

The paper considers the issues of temperature cycling and ice accretion on external paint coatings of aircraft as well as the negative effects of these processes expressed in periodic tension-compression strain and absorption of atmospheric moisture by surface microasperities with its subsequent freezing resulting in gradual cavity wedging. We note that laboratory testing methods recreating the temperature cycling that simulates actual operating conditions of aircraft paint coatings are increasingly labour-intensive. We substantiate the feasibility of developing a computational method for frost resistance estimation in specific operating conditions. The method takes into account the combination of contraction stresses, excessive cooling and wedging caused by ice build-up. We assume the main physical and mechanical properties of ice and paint to be homogeneous and equal to cumulative average values, and the linear thermal expansion coefficients of the substrate and coating to be constant and not dependent on temperature. We disregard ice friction over the microasperity cavities and in-flight loads on the paint coating caused by incident air flows and structural deformations of the aircraft. We present a method of computing frost resistance of aircraft paint coating subjected to cyclical ice accretion, which is based on the method of equivalent stresses. We tested frost resistance of a polyesterurethane coating over a duralumin plate in the range of --50 to 25 °C for F = 2000 freezing and thawing cycles. We performed a temperature cycling computation of the factor of safety for frost resistance in the case of periodic ice accretion. The results obtained are in good agreement with experimental data


[1] Tiong U.H., Clark G. Aircraft joints and corrosion control. Structural integrity: influence of efficiency and green imperatives. Proc. 26th ICAF Symp. Springer, 2011,pp. 625--634. DOI: https://doi.org/10.1007/978-94-007-1664-3_50

[2] Andryushchenko E.A. Svetostoykostʼ lakokrasochnykh pokrytiy [Light-resistance of paint coatings]. Moscow, Khimiya Publ., 1986.

[3] Erusalimskiy M.A. Review on aviation accidents happened due to icing. Problemy bezopasnosti poletov, 2002, no. 1, pp. 30--42 (in Russ.).

[4] Nikitin A.I. [Identification method for aircraft aerodynamic coefficient]. Sb. dokl. 7 Nauch. konf. po gidroaviatsii "Gidroaviasalon-2008". Ch. 2 [Proc. 7th Sc. Conf. on Hydroaviation "Gidroaviasalon-2008". P. 2]. Moscow, TsAGI Publ., 2008, pp. 3--6 (in Russ.).

[5] Yakovlev A.D. Khimiya i tekhnologiya lakokrasochnykh pokrytiy [Chemistry and technology of paint coatings]. St. Petersburg, Khimizdat Publ., 2008.

[6] Rasskazov L.N., ed. Gidrotehnicheskie sooruzheniya. Ch. 1. [Hydrotechnical Structures]. Moscow, Izdatelʼstvo ASV, 2011.

[7] Uglov A.A., Anishchenko L.M., Kuznetsov S.E. Adgezionnaya sposobnost’ plenok [Adhesive properties of films]. Moscow, Radio i svyaz’ Publ., 1987.

[8] Panin A.V. Nonlinear waves of localized plastic flow in nanostructured surface layers of solids and thin films. Fizicheskaya mezomekhanika [Physical Mesomechanics], 2005, vol. 8, no. 3, pp. 5--17 (in Russ.).

[9] Bost M., Pouya A. Stress generated by the freeze-thaw process in open cracks of rock walls: empirical model for tight limestone. Bull. Eng. Geol. Environ., 2017, vol. 76, no. 4, pp. 1491--1505. DOI: https://doi.org/10.1007/s10064-016-0955-6

[10] Voronin I.V., Kondrashov E.K. Durability of adhesive bonds of polymer coatings. Lakokrasochnye materialy i ikh primenenie, 1991, no. 1, pp. 25--26 (in Russ.).

[11] Raykher V.L. Ustalostnaya povrezhdaemost’ [Fatigue vulnerability]. Moscow, MATI Publ., 2006.

[12] Strizhius V.E. Metody rascheta ustalostnoy dolgovechnosti elementov aviakonstruktsiy [Calculation methods for fatigue endurance of aero-construction elements]. Moscow, Mashinostroenie Publ., 2012.

[13] Kogaev V.P. Raschety na prochnost’ pri napryazheniyakh, peremennykh vo vremeni [Stress calculations of the time-variable strain]. Moscow, Mashinostroenie Publ., 1993.

[14] Loim V.B. Calculation assessment practice of avia-construction life duration using effective stress concentration coefficients. Vestnik mashinostroeniya, 1998, no. 9, pp. 31--37 (in Russ.).

[15] Paris P.C., Tada H., Donald J.K. Service load fatigue damage --- a historical perspective. Int. J. Fatigue, 1999, vol. 21, no. 1, pp. S35--S46. DOI: https://doi.org/10.1016/S0142-1123(99)00054-7

[16] Pashaev A.M., Dzhanakhmedov A.Kh., Aliev A.A. Fatigue endurance calculation of aircraft outer paint covering. Tekhnika vozdushnogo flota [Aviation Science and Technology], 2018, no. 1, pp. 12--19 (in Russ.).

[17] Aliev A.A. Tribo-fatigue testing of paint coating. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2018, no. 1, pp. 92--100 (in Russ.).DOI: http://dx.doi.org/10.18698/0236-3941-2018-1-92-100

[18] Rudometkin F.I., Nedelʼskiy G.V. Montazh, ekspluatatsiya i remont kholodil’nykh ustanovok [Assembling, exploitation and repair of refrigerator plants]. Moscow, Pishchevaya promyshlennost’ Publ., 1975.

[19] Braun D., Cherdron H., Kern W. Praktikum der Makromolekularen Organischen Chemie. Heidelberg, 1966.