|

Comparative Assessment of Thermal Protective Characteristics of Metal and Ceramic Shields of Flow Paths of High-Temperature Gas Dynamic Facilities

Authors: Tovstonog V.A. Published: 30.04.2020
Published in issue: #2(131)/2020  

DOI: 10.18698/0236-3941-2020-2-52-75

 
Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Strength and Thermal Modes  
Keywords: gas dynamic facilities, high temperatures, thermal protection, metal shields, high-temperature ceramics, volume-reflecting scattering materials

In modern technology, gas dynamic facilities with a flow path of a high-temperature working fluid are widely used. Their effectiveness largely depends on the maximum achievable temperature, which is to a great extent determined by the heat resistance of structural materials and thermal protection systems of the most heat-stressed structural units. Most often, mass transfer thermal protection methods using the coolant of fuel components are used in such plants. However, in some gas dynamic facilities, such as high-speed ramjet engines, the use of such methods is only sufficient to maintain an acceptable temperature level for the elements of the flow path itself. As for the thermal protection of the enclosing structural elements which are adjacent to the path, it can be provided with either uncooled screens or heat-insulating linings. The study gives a comparative assessment of the temperature regime and characteristics of alternative types of heat shields

References

[1] Inozemtsev A.A., Nikhamkin M.A., Sandratskiy V.L. Osnovy konstruirovaniya aviatsionnykh dvigateley i energeticheskikh ustanovok. T. 2. Kompressory. Kamery sgoraniya. Forsazhnye kamery. Turbiny. Vykhodnye ustroystva [Fundamentals of aviation engine and power plants engineering. Vol. 2. Compressors. Burner cans. Afterburners. Output units]. Moscow, Mashinostroenie Publ., 2008.

[2] Kulagin V.V. Teoriya, raschet i proektirovanie aviatsionnykh dvigateley i energe-ticheskikh ustanovok. Kn. 1--3 [Theory, calculation and engineering of aviation engines and power plants. Vol. 1--3]. Moscow, Mashinostroenie Publ., 2003, 2005.

[3] Sudarev A.V., Antonovskiy V.I. Kamery sgoraniya razoturbinnykh ustanovok. Teploobmen [Burner cans of gas turbine plants. Heat exchange]. Leningrad, Mashinostroenie Publ., 1985.

[4] Mikheev S.V., Stroganov G.B., Romashin A.G. Keramicheskie i kompozitsionnye materialy v aviatsionnoy tekhnike [Ceramic and composite materials in aviation technique]. Moscow, Alʼteks Publ., 2002.

[5] Khronin A.V., ed. Konstruktsiya i proektirovanie aviatsionnykh i gazoturbinnykh dvigateley [Construction and enginerring of aviation and gas turbine engines]. Moscow, Mashinostroenie Publ., 1989.

[6] Inozemtsev A.A., Sandratskiy V.L. Gazoturbinnye dvigateli [Gas turbine engines]. Permʼ, JSC Aviadvigatel’ Publ., 2006.

[7] Degtyarʼ V.G., Son E.E. Giperzvukovye letatelʼnye apparaty [Hypersonic aircraft]. Moscow, Yanus-K Publ., 2018.

[8] Latypov A.F. Functional mathematical model of a hydrogen-driven combustion chamber for a scramjet. J. Appl. Mech. Tech. Phys., 2015, vol. 56, no. 5, pp. 799--812.

[9] Bushe M., Falampen F. Kamera sgoraniya dlya pryamotochnogo vozdushno-reaktivnogo dvigatelya i pryamotochnyy vozdushno-reaktivnyy dvigatelʼ, soderzhashchiy takuyu kameru sgoraniya [Burner can for ramjet engine and ramjet engine with such burner can]. Patent RF 2258150. Appl. 27.02.2003, publ. 10.08.2005 (in Russ.).

[10] Toktaliev P.D., Martynenko S.I. Mathematical model of the cooling system of combustion chambers of aviation ramjet engines using endothermic fuels. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sc.], 2015, no. 1, pp. 84--98 (in Russ.). DOI: http://dx.doi.org/10.18698/1812-3368-2015-1-84-98

[11] Semenov V.L., Kleyankin G.A., Dudareva N.N., et al. Eksperimentalʼnyy giperzvukovoy pryamotochnyy vozdushno-reaktivnyy dvigatelʼ [Experimental hypersonic ramjet engine]. Patent RF 2238420. Appl. 18.02.2003, publ. 20.10.2004 (in Russ.).

[12] Semenov V.L., Galankin E.M., Serebryakov D.I. Dvigatelʼnaya ustanovka dlya giperzvukovogo letatelʼnogo apparata [Power plant for hypersonic aircraft]. Patent RF 2287076. Appl. 24.02.2005, publ. 10.11.2006 (in Russ.).

[13] Kulʼkov A.A., Antipov E.A., Pashutov A.V., et al. Kamera sgoraniya pryamotochnogo vozdushno-reaktivnogo dvigatelya iz kompozitsionnykh materialov [Berner can of ramjet engine of conposite materials]. Patent RF 2643927. Appl. 06.06.2016, publ. 06.02.2018 (in Russ.).

[14] Pankratov B.M. Spuskaemye apparaty [Re-Entry vehicles]. Moscow, Mashinostroenie Publ., 1984.

[15] Vinitskiy A.M., ed. Konstruktsii i otrabotka RDTT [Construction and processing of solid fuel rocket engine]. Moscow, Mashinostroenie Publ., 1980.

[16] Tovstonog V.A. Heat transfer in a flattened pipe with an ablative wall. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2018, no. 6, pp. 4--19 (in Russ.).DOI: http://dx.doi.org/10.18698/0236-3941-2018-6-4-19

[17] Korolev V.U., Gontarʼ A.S., Konoplev E.E., et al. Vysokotemperaturnaya ekrannaya teploizolyatsiya [High temperature shield isolation]. Patent RF 2003106471. Appl. 27.09.2004, publ. 12.03.2003 (in Russ.).

[18] Tovstonog V.A. Radiation heat transfer and thermal protection of air-gas channel of gas dynamic plant. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2017, no. 6, pp. 114--133 (in Russ.). DOI: http://dx.doi.org/10.18698/0236-3941-2017-6-114-133

[19] Tovstong V.A. Conjugate heat transfer and estimation of thermal state of elements of the thermal protection shield package. Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering, 2019, no. 4, pp. 44--57. DOI: http://dx.doi.org/10.18698/0236-3941-2019-4-44-57

[20] Samsonov G.V., Vinitskiy I.M. Tugoplavkie soedineniya [High-melting compounds]. Moscow, Metallurgiya Publ., 1976.

[21] Kudinov V.V., Puzanov A.A., Zambrzhitskiy A.P. Optika plazmennykh pokrytiy [Optics of plasma coatings]. Moscow, Nauka Publ., 1981.

[22] Petrov V.A. Modelʼ diffuzii izlucheniya dlya radiatsionno-konduktivnogo teploperenosa v vysokotemperaturnykh poluprozrachnykh rasseivayushchikh teploizolyatsionnykh materialakh [Model of radiation diffusion for heat transfer by radiation and conduction in high-temperature translucent scattering heat insulators]. Moscow, MIREA Publ., 2012.

[23] Rutman D.S., Toropov Yu.S., Pliner S.Yu., et al. Vysokoogneupornye materialy iz dioksida tsirkoniya [High refractory materials of zirconium dioxide]. Moscow, Metallurgiya Publ., 1985.

[24] Litovskiy E.Ya., Puchkelevich N.A. Teplofizicheskie svoystva ogneuporov [Thermal-physical properties of refractories]. Moscow, Metallurgiya Publ., 1982.

[25] Tovstonog V.A. Thermal physics of scattering materials: applied problems and solutions. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2000, no. 3, pp. 67--85 (in Russ.).

[26] Eliseev V.N., Tovstonog V.A. Teploobmen i teplovye ispytaniya materialov i konstruktsiy aerokosmicheskoy tekhniki pri radiatsionnom nagreve [Heat transfer and termal tests on aerospace materials and constructions at radiative heating]. Moscow, BMSTU Publ., 2014.

[27] Gofin M.Ya. Zharostoykie i teplozashchitnye konstruktsii mnogorazovykh aerokosmicheskikh apparatov [Heat-resistant and heat protective constructions of reusable aerospace vehicles]. St. Petersburg, ZAO "TF "Mir" Publ., 2003.

[28] Paderin L.Ya., Prusov B.V., Tokarev O.D. Facility for investigations of total hemispherical emissivity of heat protection materials and thermal control coatings. TsAGI Sc. J., 2011, vol. 42, no. 1, pp. 71--82. DOI: https://doi.org/10.1615/TsAGISciJ.v42.i1.50

[29] Baranov A.N. Teploprochnostnye ispytaniya letatelʼnykh apparatov [Heat strength tests of aircraft]. Trudy TsAGI im. prof. N.E. Zhukovskogo, 1999, vyp. 2638 (in Russ.).

[30] Akopov F.A., Valʼyano G.E., Vorobʼyev A.Yu., et al. Thermal radiative properties of ceramic of cubic ZrO2 stabilized with Y2O3 at high temperatures. High Temp., 2001, vol. 39, no. 2, pp. 244--254. DOI: https://doi.org/10.1023/A:1017574816705

[31] Petrov V.A., Chernyshev A.P. Thermal-radiation properties of zirconia when heated by laser radiation up to the temperature of high-rate vaporization. TVT, 1999, vol. 37, no. 1, pp. 62--70 (in Russ.).