Estimating Thermal Decomposition Parameters for Lithium Hydride in a High Temperature Gas Flow
Authors: Tovstonog V.A. | Published: 14.06.2018 |
Published in issue: #3(120)/2018 | |
Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Strength and Thermal Modes | |
Keywords: lithium hydride, high temperature gas flow, heat-absorbing material, thermal decomposition, ablation, decomposition parameters |
Operability of high-temperature power and propulsion systems largely depends on solving the problems of thermal protection of those structural elements that are subjected to high-enthalpy gas flows. For a wide range of varying thermal load parameters, ablative thermal protection offers the most opportunities. This protection is based on physical and chemical transformation laws and the products of destruction of thermal protection material actively responding to external heat loads. Selecting a thermal protection material requires data on properties as determined by planned operation conditions. We consider certain models and estimate thermochemical decomposition parameters for the case of lithium hydride in a high temperature flow of products of kerosene combustion in air. We show that this compound may serve as a highly efficient ablative thermal protection material over a certain range of thermal load parameters
References
[1] Polezhaev Yu.V., Yurevich F.B. Teplovaya zashchita [Thermal protection]. Moscow, Energiya Publ., 1976. 392 p.
[2] Nikitin P.V. Teplovaya zashchita [Thermal protection]. Moscow, MAI Publ., 2006. 512 p.
[3] Kudryavtsev V.M. ed. Osnovy teorii i rascheta zhidkostnykh raketnykh dvigateley. Kn. 2 [Fundamentals of liquid rocket engine theory and calculation. Vol. 2]. Moscow, Vysshaya shkola Publ., 1993. 368 p.
[4] Dobrovolskiy M.V. Zhidkostnye raketnye dvigateli. Osnovy proektirovaniya [Liquid rocket engines. Design fundamentals]. Moscow, Bauman MSTU Publ., 2016. 464 p.
[5] Khronin D.V., ed. Konstruktsiya i proektirovanie aviatsionnykh gazoturbinnykh dvigateley [Construction and design of liquid rocket engines]. Moscow, Mashinostroenie Publ., 1989. 565 p.
[6] Kopelev S.Z., Gurov S.V. Teplovoe sostoyanie elementov konstruktsii aviatsionnykh dvigateley [Thermal state of aircraft engine construction elements]. Moscow, Mashinostroenie Publ., 1978. 208 p.
[7] Volchkov E.P. Pristennye gazovye zavesy [Wall-adjacent curtain gas]. Novosibirsk, Nauka Publ., 1983. 240 p.
[8] Mezhkontinentalnye ballisticheskie rakety semeystva Atlas [Intercontinental ballistic missile of the "Atlas" family]. Raketnaya tekhnika: website. Available at: http://rbase.new-factoria.ru/missile/wobb/atlas/atlas.shtml (accessed: 10.01.2018).
[9] Skibin V.A., Solonin V.I., eds. Inostrannye aviatsionnye dvigateli. Vyp. 14 [Foreign aircraft engines. Iss. 14]. Moscow, TsIAM Publ., 2005. 590 p.
[10] Grilikhes V.A., Matveev V.M., Poluektov V.P. Solnechnye vysokotemperaturnye istochniki tepla dlya kosmicheskikh apparatov [High-temperature solar heat sources for spasecraft]. Moscow, Mashinostroenie Publ., 1975. 248 p.
[11] Alekseev V.A. Osnovy proektirovaniya teplovykh akkumulyatorov kosmicheskikh apparatov [Fundamentals of spacecraft thermal storage design]. Kursk, Naukom Publ., 2016. 248 p.
[12] Internet biblioteka. Available at: http://www.xliby.ru/istorija/bitva_za_zvezdy_2_kosmicheskoe_protivostojanie_chast_i/
[13] Gofin M.Ya. Zharostoykie i teplozashchitnye konstruktsii mnogorazovykh aerokosmicheskikh apparatov [Heat-resistant and thermal-protection constructions for reusable spacecraft]. Moscow, Mir Publ., 2003. 672 p.
[14] Shmidt D.L. Ablators in spacecraft. Voprosy raketnoy tekhniki, 1970, no. 6, pp. 9–36 (in Russ.).
[15] Polezhaev Yu.V., Frolov G.A. Teplovoe razrushenie materialov [Materials heat destruction]. Kiev, IPM NANU Publ., 2005. 288 c.
[16] Gorskiy V.V. Teoreticheskie osnovy rascheta ablyatsionnoy teplovoy zashchity [Theoretical fundamentals of ablative heat protection calculation]. Moscow, Nauchnyy mir Publ., 2015. 688 p.
[17] Fakhrutdinov I.Kh., Kotelnikov A.V. Konstruirovanie i proektirovanie raketnykh dvigateley tverdogo topliva [Construction and design of solid rocket engines]. Moscow, Mashinostroenie Publ., 1987. 328 p.
[18] Vinitskiy A.M., Volkov V.T., Volkovitskiy I.G., Kholodilov S.V. Konstruktsii i otrabotka RDTT [Construction and optimization of solid rocket engine]. Moscow, Mashinostroenie Publ., 1980. 230 p.
[19] Shpilrayn E.E., Yakimovich K.A. Gidrid litiya. Fiziko-khimicheskie i teplofizicheskie svoystva [Lithium hydride. Physical-chemical and thermal-physical properties]. Moscow, Izd-vo standartov Publ., 1972. 108 p.
[20] Yakimovich K.A., Mozgovoy A.G. Izotopnye modifikatsii gidrida litiya i ikh rastvory s litiem. Teplofizicheskie i fiziko-khimicheskie svoystva [Izotop modifocations of lithium hydride and their solutions with lithium. Thermal-physical and physical-chemical properties]. Moscow, Fizmatlit Publ., 2006. 280 p.
[21] Mueller W.M., Blackledge J.P., Libowitz G.G., eds. Metal hydrides. Academic Press, 1968. 804 p.
[22] Trusov B.G. [TERRA software for modelling of phase and chemical equilibrium at high temperatures]. III Mezhdunarodnyy simpozium «Gorenie i plazmokhimiya» [III Int. Symp. "Combustion and plazmochemistry"]. Almaty, Kazak universiteti Publ. 2005, pp. 52–57.
[23] Brown M.E., Dollimore D., Galwey A.K. Reactions in the solid state. Elsevier Science, 1980. 339 p.
[24] Dobrotvorskiy M.A., Elets D.I., Dulya M.S., et al. Methods of aluminium hydride activation. Vestnik SPbGU. Fizika i khimiya [Vestnik SPbSU. Physics and Chemistry], 2012, no. 1, pp. 15–23 (in Russ.).
[25] Nogita K., Tran X.Q., Yamamoto T., Tanaka E., McDonald S.D., Gourlay Ch.M., Yasuda K., Matsumura S. Evidence of the hydrogen release mechanism in bulk MgH2. Scientific Reports, 2015, no. 5, art. 8450. DOI: 10.1038/srep08450
[26] Kulikov I.S. Termicheskaya dissotsiatsiya soedineniy [Thermal dissociation of compaunds]. Moscow, Metallurgiya Publ., 1969. 574 p.
[27] Elektronnyy spravochnik po svoystvam veshchestv, ispolzuemykh v teploenergetike (OIVT RAN) [Electronic directory on properties of materials used in heat power engineering (OIVT RAS)]: website. Available at: http://twt.mpei.ac.ru (accessed: 10.01.2018).
[28] Teplofizicheskie svoystva zhidkometallicheskikh teplonositeley [Thermal-physical properties of liquid-metal coolants]. "ROSATOM"–NIYaU MIFI: website. Available at: http://www.gsssd-rosatom.mephi.ru/DB-tp-01/Li.php (accessed: 10.01.2018).