Soluton Algorthim of Generalized Non-Stationary Heat Conduction Problem in the Bodies of Simple Geometric Shapes
Authors: Eliseev V.N., Tovstonog V.A., Borovkova T.V. | Published: 14.02.2017 |
Published in issue: #1(112)/2017 | |
Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Strength and Thermal Modes | |
Keywords: temperature field, generalized heat conduction problem, bodies of a simple shape, solution algorithm |
The study proposes a single algorithm for solving the one-dimensional non-stationary heat conduction problems in the bodies of simple geometric shapes with internal energy sources of different nature. The bodies under consideration may have the shape of a plate, a rod (rib), a solid or hollow cylinder and a sphere. The basis of the problem solution is a generalized formulation of the heterogeneous differential equation of non-stationary heat conduction in partial derivatives for the bodies of the specified form and the method of integral transformations in finite bounds. The procedure for solving a specific boundary-value problem involves the presence of a mathematical model, but does not require integration of the differential equation of heat conduction. We give an example of determining the temperature field in a plate with unevenly distributed heat sources and different conditions of heat transfer at the boundary surfaces. It is relevant to use the solutions of this type, particularly, for testing the complex programs calculating the temperature field of thermal-loaded design elements, as well as for the analysis of the thermal regime in the early stages of design and substantiation of the eligible assumptions.
References
[1] Khoroshev A.N. Vvedenie v upravlenie proektirovaniem mekhanicheskikh system [Introduction to mechanical systems engineering control]. Belgorod, 1999. 372 p.
[2] Hemsch M.J., Nielsen J.N., ed. Tactical missile aerodynamics. New York, American Institute of Aeronautics and Astronautics, 1986. 858 p. (Russ. ed.: Aerodinamika raket. V 2 t. T. 2. Metody aerodinamicheskogo rascheta. Moscow, Mir Publ., 1989. 512 p.).
[3] Samarskiy A.A., Vabishchevich P.N. Chislennye metody resheniya obratnykh zadach matematicheskoy fiziki [Numerical technique for solving inverse problem of mathematical physics]. Moscow, LKI Publ., 2009. 480 p.
[4] Grushin A.I. Verification in computer engineering. Potentsial, 2007, no. 4 (in Russ.). Available at: http://www.ipmce.ru/eng/img/press/potential4-2007.pdf
[5] Kartashov E.M. Analiticheskie metody v teploprovodnosti tverdykh tel [Analytical methods in solid body thermal conductivity]. Moscow, Vysshaya shkola Publ., 2001. 550 p.
[6] Carslaw H., Jaeger J. Conduction of heat in solids. Oxford University Press, 1959. 517 p. (Russ. ed.: Teploprovodnost’ tverdykh tel. Moscow, Nauka Pub., 1964. 488 p.).
[7] Mikhaylov M.D. Nestatsionarnye temperaturnye polya v obolochkakh [Nonstationary thermal field in shells]. Moscow, Energiya Publ., 1967. 120 p. (in Russ.).
[8] Kudinov V.A., Averin B.A., Stefanyuk E.V., Nazarenko S.A. Analiticheskie metody teploprovodnosti [Analytical methods of thermal conductivity]. Samara, SamGTU Publ., 2004. 209 p.
[9] Kudinov V., Stefanyuk E., Kudinov I. Analiticheskie metody teploprovodnosti [Analytical methods of thermal conductivity]. Saarbrucken (Germany), LAP Lambert Academic Publishing, 2011. 340 p. (in Russ.).
[10] Eliseev V.N., Borovkova T.V. The generalized analytical approach to calculating a stationary temperature field in objects of simple geometrical shapes. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mech. Eng.], 2014, no. 1, pp. 40-57 (in Russ.).
[11] Koshlyakov N.S., Gliner E.B., Smirnov M.M. Uravneniya v chastnykh proizvodnykh matematicheskoy fiziki [Partial differential equations of mathematical physics]. Moscow, Vysshaya shkola Publ., 1979. 710 p.
[12] Kamke E. Differentialgleichungen. Losungsmethoden und Losungen; Gewohnliche Differentialgleichungen, Leipzig, Becker, 1943. (Russ. ed.: Spravochnik po obyknovennym differentsial’nym uravneniyam. Moscow, Nauka Publ., 1976. 576 p.).
[13] Abramovits M., Stigan I. Spravochnik po spetsial’nym funktsiyam [Special Function Handbook]. Moscow, Energiya Publ., 1979. 832 p.
[14] Eliseev V.N., Tovstonog V.A., Borovkova T.V., Pavlova Ya.M. Thermostability of casings of gas-discharge tubular water-cooled radiation sources in nonstationary state. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mech. Eng.], 2016, no. 2, pp. 45-59 (in Russ.). DOI: 10.18698/0236-3941-2016-2-45-59
[15] Baranov V.V., Shlykovich A.A. Bath for infrared heating of liquid processing medium in microelectronics technology. Zhurnal nauChnykh publikatsiy aspirantov i doktorantov, 2013, no. 4 (in Russ.). Available at: http://www.jurnal.org/articles/2013/electron1.html
[16] Belyaev N.M., Ryadno A.A. Metody teorii teploprovodnosti. T. 1 [Thermal conductivity methods theory. Vol. 1]. Moscow, Vysshaya shkola Publ., 1982. 328 p.
[17] Zarubin V.S. Temperaturnye polya v konstruktsii letatel’nykh apparatov [Thermal fields in aircraft construction]. Moscow, Mashinostroenie Publ., 1966. 216 p.
[18] Kreyt F., Blek U. Osnovy teploperedachi [Fundamentals of heat flow]. Moscow, Mir Publ., 1983. 512 p.