Mathematical Simulation of the Contactless Process in Charging a Multicopter Battery From the External Electromagnetic Field
Authors: Kim K.K., Koroleva E.B., Vataev A.S., Mikhailov M.V., Soloviev A.S. | Published: 22.01.2025 |
Published in issue: #4(151)/2024 | |
Category: Aviation and Rocket-Space Engineering | Chapter: Thermal, Electric Jet Engines, and Power Plants of Aircrafts | |
Keywords: unmanned aerial vehicle, winding, charge, battery, contact wire |
Abstract
The paper studies the process of contactless battery recharging of the multicopter type unmanned aerial vehicle with the external electromagnetic field power created by currents flowing through the wires of a contact network in the electrified railway transport or the overhead power line, without interrupting the flying vehicle flight. Power is being transferred on board the multicopter by induction using an electric winding positioned on it and connected to the battery. A finite element mathematical model is constructed, and the EMF is computed. The EMF is induced in winding at various trajectories of the vehicle motion in vicinity of the railway contact network wire electrified with direct (at the 3.3 kV voltage) and alternating (at the 27.5 kV voltage and 50 Hz frequency) current. The paper shows that the EMF highest values in the winding are induced during a flight under the AC contact wire. With the winding motion under the DC wire, the induced EMF frequency and amplitude depend on the device deviations period from its rectilinear motion axis direction. The EMF curve is not sinusoidal; its distortions depend on the winding deviation amplitude from the motion direction axis. In the AC case in the contact wire, the induced EMF amplitude primarily depends on the amplitude and frequency of the external magnetic field created by this current. The device motion parameters are slightly effecting the EMF. In this case, the highest EMF values sufficient to recharge the battery, are induced with the winding motion under the contact wire
The work was carried out within the framework of the Russian Science Foundation (grant no. 24-29-00159) provided for 2024--2025 and based on resultsof the 2023 competition "Conducting fundamental scientific and exploratory scientific research by small separate scientific groups"
Please cite this article in English as:
Kim K.K., Koroleva E.B., Vataev A.S., et al. Mathematical simulation of the contact-less process in charging a multicopter battery from the external electromagnetic field. Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering, 2024, no. 4 (151), pp. 28--46 (in Russ.). EDN: ZRDBMU
References
[1] Korshunenko M.V. Proving long flight UAV due to improved operational performance. Aktualnye problemy aviatsii i kosmonavtiki, 2016, vol. 1, no. 12, pp. 862--863 (in Russ.). EDN: WTOCEN
[2] Voronov S.V. [Development of algorithms and software tools for control of an unmanned aerial vehicle]. 14 Nats. konf. po iskusstvennomu intellektu s mezhdunar. uchastiem. KII-2014. Trudy konf. T. 3 [14 National Conf. on Artificial Intelligence with Int. Anticipation KII-2014. Vol. 3]. Kazan, Shkola Publ., 2014, pp. 249--255 (in Russ.). EDN: TOVZSR
[3] Artemyeva A.O., Vyalova E.P. [A new generation battery for UAVs in the service of the Ministry of Emergency Situations. Complex problems of technosphere security]. Bezopasnyy gorod. Mater. XI Nauch.-prakt. konf. Ch. 2 [Safe City. Proc. XI Int.-Pract. Conf. P. 2]. Voronezh, VGTU Publ., 2016, pp. 107--110 (in Russ.). EDN: KYLKHO
[4] Sergeev I.A. [UAVs with hydrogen fuel cells]. Novye tekhnologii, materialy i oborudovanie Rossiyskoy aviakosmicheskoy otrasli. Vseros. nauch.-prakt. konf. s mezhdunar. uchastiem. T. 1 [New Technologies, Materials and Equipment of the Russian Aerospace Industry. Russ. Sc.-Pract. Conf. with Int. Anticipation. Vol. 1]. Kazan, KNITU-KAI Publ., 2018, pp. 75--77 (in Russ.). EDN: YNBGMP
[5] Churlyaeva K.D., Stepanov S.F., Churlyaeva O.N. [Rationalisation of efficiency of hybrid wind-solar system of energy sources for recharging quadrocopters]. Aktualnye problemy energetiki APK. Mater. VIII Mezhdunar. nauch.-prakt. konf. [Actual Problems of Energetics of Agroindustrial Complex. Proc. VIII Int. Sc.-Pract. Conf.]. Saratov, TseSAin Publ., 2017, pp. 284--286 (in Russ.). EDN: ZQZCVZ
[6] Churlyaeva K.D., Churlyaeva O.N., Stepanov S.F. [Monitoring of overhead power lines using unmanned aerial vehicles. Development of the autonomous ground station for recharging quadrocopters.]. Aktualnye problemy energetiki APK. Mater. VII Mezhdunar. nauch.-prakt. konf. [Actual Problems of Energetics of Agroindustrial Complex. Proc. VII Int. Sc.-Pract. Conf.]. Saratov, TseSAin Publ., 2016, pp. 251--252 (in Russ.). EDN: XGQQAX
[7] Степанов С.Ф., Артюхов И.И., Артюхов Д.И. и др. Комбинированные наземные автономные зарядные станции общего пользования с ветро-солнечными источниками энергии для мультикоптеров. Актуальные проблемы энергетики АПК. Матер. VI Междунар. науч.-практ. конф. Саратов, ЦЕСАИН, 2015, с. 269--274. EDN: UEEIQR
[8] Denisov Yu.A., Shapovalov O.L., Sereda O.V., et al. Optimization of energy dynamical processes in the control system of the drive for stabilizing the flight of the unmanned aerial vehicle. Tekhnicheskie nauki i tekhnologii, 2018, no. 3, pp. 187--195 (in Russ.). EDN: ZCTXLV
[9] Kim K.K. Bespilotnyy letatelnyy kompleks [Unmanned aerial complex]. Patent EA 042897. Appl. 30.06.20, publ. 31.03.2023 (in Russ.).
[10] Kim K.K., Panychev A.Yu. Bespilotnyy letatelnyy apparat dlya diagnostiki vysokovoltnykh ustanovok [Unmanned aerial vehicle for diagnosing high-voltage electrical installations]. Patent RU 2791914. Appl. 08.11.2022, publ. 14.03.2023 (in Russ.).
[11] Kim K.K., Panychev A.Yu. Bespilotnyy letatelnyy apparat [Unmanned aerial vehicle]. Patent RU 2801404. Appl. 01.02.2023, publ. 08.08.2023 (in Russ.).
[12] Simica M., Bila C., Vojisavljevic V. Investigation in wireless power transmission for UAV charging. Proc. Comp. Sc., 2015, no. 60, pp. 1846--1855. DOI: https://doi.org/10.1016/j.procs.2015.08.295
[13] Kurs A., Karalis A., Moffatt R., et al. Wireless power transfer via strongly coupled magnetic resonances. Science, 2007, vol. 317, no. 5834, pp. 83--86. DOI: https://doi.org/10.1126/science.1143254
[14] McDonough M. Integration of inductively coupled power transfer and hybrid energy storage system: a multi-port power electronics interface for battery powered electric vehicles. IEEE Trans. Power Electron., 2015, vol. 30, no. 11, pp. 6423--6433. DOI: https://doi.org/10.1109/TPEL.2015.2422300
[15] Yin S., Qu Z. Rate-optimal coding design in joint transfer of energy and information. IEEE Commun. Lett., 2015, vol. 19, no. 5, pp. 715--718. DOI: https://doi.org/10.1109/LCOMM.2015.2410291
[16] Griffin B., Detweiler C. Resonant wireless power transfer to ground sensors from a UAV. IEEE ICRA, 2012, pp. 2660--2665. DOI: https://doi.org/10.1109/ICRA.2012.6225205
[17] Chernov Yu.A. Elektrosnabzhenie elektricheskikh zheleznykh dorog [Power supply of electric railways]. Moscow, UMTs ZhDT Publ., 2016.
[18] Nekrasov O.A., ed. Rezhimy raboty magistralnykh elektrovozov [Modes of operation of mainline electric locomotives]. Moscow, Transport Publ., 1983.
[19] Kim K.K., Panychev A.Yu. Innovative electrical engineering developed for the transport industry by the Emperor Alexander I Petersburg state transport university. Byulleten rezultatov nauchnykh issledovaniy [Bulletin of Scientific Research Result], 2021, no. 4, pp. 87--103 (in Russ.). DOI: https://doi.org/10.20295/2223-9987-2021-4-87-103
[20] Kim K.K., Efremov M.A., Ivanov S.N. [Development of an electromechanical system for driving an unmanned aerial vehicle]. Proizvodstvennye tekhnologii budushchego: ot sozdaniya k vnedreniyu. Mater. VI Mezhdunar. nauch.-prakt. konf. molodykh uchenykh. Ch. 1 [Production Technologies of the Future: from Creation to Implementation. Proc. VI Int. Sc.-Pract. Conf. of Young Scientists. P. 1]. Komsomolsk-na-Amure, KnAGU Publ., 2023, pp. 193--197 (in Russ.).