|

Numerical Simulation of the NK-38ST Gas Turbine Engine Combustion Chamber CO Emission Depending on the Ambient Temperature

Authors: Tikhonov O.A., Sabirzyanov A.N., Baklanov A.V. Published: 18.09.2024
Published in issue: #3(150)/2024  

DOI:

 
Category: Aviation and Rocket-Space Engineering | Chapter: Thermal, Electric Jet Engines, and Power Plants of Aircrafts  
Keywords: gas turbine unit, combustion chamber, mathematical model, numerical simulation, kinetic mechanism, emission

Abstract

The paper considers a created physical and mathematical model for computing the CO emission. Turbulent combustion of methane with air was mathematically simulated at different ambient temperatures in the NK-38ST gas turbine engine combustion chamber in the stationary three-dimensional approximation using the Ansys Fluent fluid dynamics computation package. CO emission simulation results obtained using various chemical mechanisms were compared with the experiment data. CO emission numerical results demonstrating correct values in a wide range of the ambient temperatures were obtained for the FiniteRate combustion model with the GRI-Mesh 3.0 kinetic mechanism. Maximum error at the low temperatures was not exceeding 4 %. According to the literature sources, results of predicting the CO emission and temperature field distributions are unsatisfactory: error in the CO emission is 27 % or more. The global generalized two-stage kinetic mechanism methane + air is built into the Ansys Fluent package, correctly identifies the temperature fields, but predicts emission characteristics at the negative ambient temperatures with an error of 92 %. Fast and high-quality forecast of the CO emission in numerical simulation lies in creating new reduced mechanisms for the narrow ranges in the ambient temperature alteration

Please cite this article in English as:

Tikhonov O.A., Sabirzyanov A.N., Baklanov A.V. Numerical simulation of the NK-38ST gas turbine engine combustion chamber CO emission depending on the ambient temperature. Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering, 2024, no. 3 (150), pp. 19--33 (in Russ.). EDN: ULJBBC

References

[1] Komarov E.M., Kokueva Zh.M. Improving the efficiency of gas pumping units: problems and solutions. Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering, 2019, no. 5 (128), pp. 104--118 (in Russ.).DOI: https://doi.org/10.18698/0236-3941-2019-5-104-118

[2] Warnatz J., Maas U., Dibble R.W. Combustion. Berlin, Springer-Verlag, 2001.

[3] Kutsenko Yu.G. Chislennye metody otsenki emissionnykh kharakteristik kamer sgoraniya gazoturbinnykh dvigateley [Numerical methods of estimation of emission characteristics of combustion chambers of gas turbine engines]. Ekaterinburg-Perm, UrO RAS Publ., 2006.

[4] Sabirzyanov A.N., Yavkin V.B., Aleksandrov Yu.B., et al. Gas-turbine engine combustor emission simulation. Vestnik KGTU im. A.N. Tupoleva, 2014, no. 2, pp. 62--70 (in Russ.). EDN: STWMKN

[5] Lavrov V.N., Postnikov A.M., Tsibizov Yu.I., et al. Developing of low emission fuel burning system in gas turbine engines. Vestnik SGAU im. S.P. Koroleva [Vestnik of the Samara State Aerospace University], 2007, no. 2, pp. 118--127 (in Russ.). EDN: IRGGUH

[6] Kozlov V.E., Starik A.M., Titova N.S., et al. On mechanisms of formation of environmentally harmful compounds in homogeneous combustors. Combust. Explos. Shock Waves, 2013, vol. 49, no. 5, pp. 520--535. DOI: https://doi.org/10.1134/S0010508213050031

[7] Nguen T.Kh. Improved chemical reactor network application for predicting the emission of nitrogen oxides in a lean premixed gas turbine combustor. Combust. Explos. Shock Waves, 2019, vol. 55, no. 3, pp. 267--273. DOI: https://doi.org/10.1134/S0010508219030031

[8] Zakharov V.M., Kozlov V.E., Lebedev A.B., et al. Development of reactor models of a diffusion combustion chamber for comparative analysis of detailed and reduced kinetic schemes of combustion of hydrocarbon fuels. Combust. Explos. Shock Waves, 2009, vol. 45, no. 2, pp. 126--133. DOI: https://doi.org/10.1007/s10573-009-0017-5

[9] Goltsev V.F., Shchepin S.A. Analysis of the flamelet model for calculation of emissions of pollutants by combustors. High Temp., 2016, vol. 54, no. 4, pp. 541--546. DOI: https://doi.org/10.1134/S0018151X16040076

[10] Mingazov B.G., Yavkin V.B., Sabirzyanov A.N., et al. Analysis of combustion models applicability for designing combustion chamber with a large number of nozzles. Vestnik SGAU im. S.P. Koroleva [Vestnik of the Samara State Aerospace University], 2011, no. 5, pp. 208--214 (in Russ.). EDN: OXZWSH

[11] Snegirev A.Yu., Frolov A.S. The large eddy simulation of a turbulent diffusion flame. High Temp., 2011, vol. 49, no. 5, pp. 690--703. DOI: https://doi.org/10.1134/S0018151X11040201

[12] Metcalfe W.K., Burke S.M., Ahmed S.S., et al. A hierarchical and comparative kinetic modeling study of С12 hydrocarbon and oxygenated fuels. Int. J. Chem. Kinet., 2013, vol. 45, no. 2, pp. 638--675. DOI: https://doi.org/10.1002/kin.20802

[13] Li Y., Zhou C.-W., Somers K.P., et al. The oxidation of 2-butene: A high pressure ignition delay, kinetic modeling study and reactivity comparison with isobutene and 1-butene. Proc. Combust. Inst., 2017, vol. 36, no. 1, pp. 403--411. DOI: https://doi.org/10.1016/j.proci.2016.05.052

[14] Zhou C.-W., Li Y., Burke U., et al. An experimental and chemical kinetic modeling study of 1,3-butadiene combustion: ignition delay time and laminar flame speed mea-surements. Combust. Flame, 2018, vol. 197, pp. 423--438. DOI: https://doi.org/10.1016/j.combustflame.2018.08.006

[15] Egolfopolous F.N., Cho P., Law C.K. Laminar flame speeds of methane-air mixtures under reduced and elevated pressures. Combust. Flame, 1989, vol. 76, no. 3-4, pp. 375--391. DOI: https://doi.org/10.1016/0010-2180(89)90119-3

[16] Zettervall N., Fureby C., Nilsson E.J.K. Evaluation of chemical kinetic mechanisms for methane combustion: a review from a CFD perspective. Fuels, 2021, vol. 2, no. 2, pp. 210--240. DOI: https://doi.org/10.3390/fuels2020013

[17] Peters T. Numerical modeling of turbulence natural-gas diffusion flames. Phd thesis. Delft, Delft TU, 1995.

[18] Козлов В.Е., Лебедев А.Б., Секундов А.Н. и др. Моделирование скорости турбулентного гомогенного горения на основе "квазиламинарного" подхода. ТВТ, 2009, т. 47, № 6, с. 946--953. EDN: KYGDWT

[19] Smooke M.D. Reduced kinetic mechanisms and asymptotic approximations for methane-air flames. Berlin, Springer-Verlag, 1991.

[20] Baklanov A.V. Fuel combustion efficiency ensuring in low-emission combustion chamber of gas turbine engine under various climate conditions. Vestnik MAI [MAI Aerospace Journal], 2022, vol. 29, no. 1, pp. 144--155 (in Russ.). DOI: https://doi.org/10.34759/vst-2022-1-144-155