|

Heat Exchange and Friction Analysis in Noble Gas Mixtures for Closed Gas Turbines

Authors: Egorov K.S., Stepanova L.V. Published: 19.12.2021
Published in issue: #4(139)/2021  

DOI: 10.18698/0236-3941-2021-4-4-18

 
Category: Aviation and Rocket-Space Engineering | Chapter: Thermal, Electric Jet Engines, and Power Plants of Aircrafts  
Keywords: close gas turbine, noble gases, heat transfer, Prandtl number, mixture of gases

The types of heat exchange surfaces used in closed gas turbines for space applications and their conversion version (ground application) as autonomous long-resource power plants of low power (less than 10 kW) are considered. The data of the works currently known in Russia and abroad on the developed turbulent flow in the tube when using gas mixtures with abnormally low Prandtl numbers (0.2) have been analyzed. Recommendations on the application of the analytical relations of Kays, Petukhov and Popov for the calculation of the Nusselt number in pipes are given. The influence of non-isothermal flow and initial pipe section on friction as well as the working body Prandtl number on heat exchange and friction for highly compact plate and fin heat exchange surfaces with staggered arrangement of ribs are analyzed. It is revealed that the relations obtained for the air model are inapplicable for working bodies with Prandtl numbers different from the air Prandtl number. The necessity of further experimental and analytical investigations of heat exchange and friction in tubes under transient flow regime and in highly compact finned surfaces with staggered ribs is confirmed

References

[1] Arbekov A.N., Leontyev A.I., Samsonov V.L., et al. Non-nuclear energy of manned Mars mission. Izv. RAN. Energetika, 2002, no. 4, pp. 3--12 (in Russ.).

[2] Arbekov A.N., Leontyev A.I. Development of space gas turbine plants in the works of V.L. Samsonov. Trudy MAI, 2011, no. 43 (in Russ.). Available at: http://trudymai.ru/published.php?ID=24713

[3] Mason L.S., Shaltens R.K., Dolce J.L., et al. Status of Brayton cycle power conversion development at NASA GRC. AIP Conf. Proc., 2002, vol. 608, no. 1, pp. 865--871. DOI: https://doi.org/10.1063/1.1449813

[4] Mohamed S.E., Tournier J.P. Noble gas binary mixtures for gas-cooled reactor power plants. Nucl. Eng. Design, 2008, vol. 238, no. 6, pp. 1353--1372. DOI: https://doi.org/10.1016/j.nucengdes.2007.10.021

[5] Tournier J.P., Mohamed S.E. Properties of noble gases and binary mixtures for closed Brayton сycle application. Energy Convers. Manag., 2008, vol. 49, no. 3, pp. 469--492. DOI: https://doi.org/10.1016/j.enconman.2007.06.050

[6] Pierce B.L. The influence of recent heat transfer data on gas mixtures (He--Ar, H2--CO2) on closed cycle gas turbines. J. Eng. Power., 1981, vol. 103, no. 1, pp. 114--117. DOI: https://doi.org/10.1115/1.3230681

[7] Johnson P.K. Experimental validation of a closed Brayton cycle system transient simulation. AIP Conf. Proc., 2006, vol. 813, no. 1, pp. 673--681. DOI: https://doi.org/10.1063/1.2169248

[8] Kays W.M., London A.L. Compact heat exchangers. New York, McGraw-Hill Book Company, 1964.

[9] Desmon L.G. Braiton cycle radiant gas heating system. Final report NASA-CR-72575. San Diego, Solar Division of International Harvester Company, 1969.

[10] Taylor M.F., Bauer K.E., McEligot D.M. Internal forces convection to low-Prandtl number gas mixtures. Int. J. Heat Mass Transf., 1988, vol. 31, no. 1, pp. 13--25. DOI: https://doi.org/10.1016/0017-9310(88)90218-9

[11] Serksnis A.W., McEligot D.M., Taylor M.F. Convective heat transfer for ship propulsion. 4th Annual Summary Report ADA-062442, Arizona, Tucson, Defense Technical Information Center, 1978.

[12] Magee P.M., McEligot D.M. Effect of property variation on the turbulent flow of gases in tubes: the thermal entry. Nuclear Sc. Eng., 1968, vol. 31, no. 2, pp. 337--341. DOI: https://doi.org/10.13182/NSE68-A18246

[13] Kutateladze S.S., Leontyev A.I. Teplomassobmen i trenie v turbulentnom pogranichnom sloe [Heat, mass transfer and friction in turbulent boundary layer]. Moscow, Energoatomizdat Publ., 1985.

[14] Kulikova T.N., Markov P.V., Solonin V.I. Simulation of heat transfer to the gas coolant with low-Prandtl number value. Nauka i obrazovanie: nauchnoe izdanie MGTU im. N.E. Baumana [Science and Education: Scientific Publication], 2015, no. 6, pp. 420--437 (in Russ.). Available at: http://engineering-science.ru/doc/780763.html

[15] Petukhov B.S., ed. Teploobmen v yadernykh energeticheskikh ustanovkakh [Heat transfer in nuclear power plants]. Moscow, MEI Publ., 2003.

[16] Drew T.B., Koo E.C., McAdams W.H. The friction factor in clean, round pipe. Trans. Inst. Chem. Eng., 1932, no. 28, pp. 56--72.

[17] Elistratov S.L., Vitovskii O.V., Slesareva E.Yu. Experimental investigation of heat transfer of helium--xenon mixtures in cylindrical channels. J. Eng. Thermophys., 2015, vol. 24, no. 1, pp. 33--35. DOI: https://doi.org/10.1134/S181023281501004X

[18] Ismail L.S., Velraj R., Ranganayakulu C. Studies on pumping power in terms of pressure drop and heat transfer characteristics of compact plate-fin heat exchangers --- a review. Renew. Sust. Energ. Rev., 2010, vol. 14, no. 1, pp. 478--485. DOI: https://doi.org/10.1016/j.rser.2009.06.033

[19] Hu S., Herrold K. Prandtl number effect on offset fin heat exchanger performance-predictive model for heat transfer and pressure drop. Int. J. Heat Mass Transf., 1995, vol. 38, no. 6, pp. 1043--1051. DOI: https://doi.org/10.1016/0017-9310(94)00219-L

[20] Hu S., Herrold K. Prandtl number effect on offset fin heat exchanger performance experimental results. Int. J. Heat Mass Transf., 1995, vol. 38, no. 6, pp. 1053--1061. DOI: https://doi.org/10.1016/0017-9310(94)00220-P

[21] Tinaut F.V., Melgar A., Rahman Ali A.A. Correlations for heat transfer and flow friction characteristics of compact plate-type heat exchangers. Int. J. Heat Mass Transf., 1992, vol. 35, no. 7, pp. 1659--1665. DOI: https://doi.org/10.1016/0017-9310(92)90136-G

[22] Joshi H.M., Webb R.L. Heat transfer and friction in the offset-strip fin heat exchangers. Int. J. Heat Mass Transf., 1987, vol. 30, no. 1, pp. 69--84. DOI: https://doi.org/10.1016/0017-9310(87)90061-5

[23] Wieting A.R. Empirical correlations for heat transfer and flow friction characteristics of rectangular offset-fin plate-fin heat exchangers. ASME J. Heat Transfer, 1975, vol. 97, no. 3, pp. 480--490. DOI: https://doi.org/10.1115/1.3450412

[24] Arbekov A.N. Selection of the working medium for 6- to 12-kW closed organic-fuel-powered gas-turbine plants. High Temp., 2014, vol. 52, no. 1, pp. 121--125.DOI: https://doi.org/10.1134/S0018151X14010015

[25] McAdams W.H. Heat transmission. New York, McGraw-Hill Book Company, 1954.