|

Optimisation Method for Multistage Compressors

Authors: Goryachkin E.S., Matveev V.N., Popov G.M., Baturin O.V., Novikova Yu.D. Published: 06.09.2021
Published in issue: #3(138)/2021  

DOI: 10.18698/0236-3941-2021-3-38-59

 
Category: Aviation and Rocket-Space Engineering | Chapter: Thermal, Electric Jet Engines, and Power Plants of Aircrafts  
Keywords: multistage compressor, optimisation, numerical model, parametric simulation, efficiency, stability margin

The paper presents an algorithm for seeking an optimal blade configuration for multistage axial-flow compressors. The primary tool behind the algorithm is 3D CFD simulation, augmented by commercial optimisation software. The core of the algorithm involves feeding an initial data vector to the parametric simulation module so as to form a "new" blade geometry, which is then transferred to 3D computational software. The results obtained are further processed in a program that implements the algorithm for seeking the optimum and forms a new input data vector to achieve the set goal. We present a method of parametrically simulation the blade shape, implemented in a software package, making it possible to describe the shape of the compressor blade profiles using a minimum number of variables and to automatically change the shape in the optimisation cycle. The algorithm developed allows the main parameters of compressor operation (efficiency, pressure ratio, air flow rate, etc.) to be improved by correcting the profile shape and relative position of the blades. The algorithm takes into account various possible constraints. We used the method developed to solve practical problems of optimising multistage axial compressors of gas turbine engines for various purposes, with the number of compressor stages ranging from 3 to 15. As a result, the efficiency, pressure ratio and stability margin of gas turbine engines were increased
The study was supported by the Ministry of Education and Science of the Russian Federation as part of a government assignment (project no. FSSS-2020-0015 "Investigation of steady-state and non-steady-state dynamic and vibroacoustic processes in hydraulic and gas systems by means of physical and mathematical simulation")

References

[1] Kulagin V.V. Teoriya, raschet i proektirovanie aviatsionnykh dvigateley i energe-ticheskikh ustanovok [Theory, calculation and design of aircraft engines and power plants]. Moscow, Mashinostroenie Publ., 2003.

[2] Deng X., Guo F., Liu Y., et al. Aero-mechanical optimization design of a transonic fan blade. ASME Turbo Expo, 2013, no. GT2013-95357, V06BT43A014. DOI: https://doi.org/10.1115/GT2013-95357

[3] Ning T., Gu Ch., Li X., et al. Three-dimensional aerodynamic optimization of a multi-stage axial compressor. ASME Turbo Expo, 2016, no. GT2016-57626, V02CT45A026. DOI: https://doi.org/10.1115/GT2016-57626

[4] Yan Ch., Yin Z., Guo F., et al. A newly improved collaborative optimization strategy: application to conceptual multidisciplinary design optimization of a civil aero-engine. ASME Turbo Expo, 2017, no. GT2017-64177, V02CT47A015. DOI: https://doi.org/10.1115/GT2017-64177

[5] Yu J., Ji L., Li W., et al. Shape optimization of axial compressor blades using adjoint method with emphasis on thickness distribution. ASME Turbo Expo, 2015, no. GT2015-42234, V02CT45A005. DOI: https://doi.org/10.1115/GT2015-42234

[6] Yang J., Luo J., Xiong J., et al. Aerodynamic design optimization of the last stage of a multi-stage compressor by using an adjoint method. ASME Turbo Expo, 2016, no. GT2016-56893, V02CT39A033. DOI: https://doi.org/10.1115/GT2016-56893

[7] Vasilopoulos I., Flassig P., Meye M. CAD-based aerodynamic optimization of a compressor stator using conventional and adjoint-driven approaches. ASME Turbo Expo, 2017, no. GT2017-63199. DOI: https://doi.org/10.1115/GT2017-63199

[8] Kang Y.-S., Park T.-Ch, Yang S.-S., et al. Multidisciplinary design optimization and performance evaluation of a single-stage transonic axial compressor. ASME Turbo Expo, 2012, no. GT2012-69252, pp. 361--369. DOI: https://doi.org/10.1115/GT2012-69252

[9] Safari A., Hajikolaei K.H., Lemu H., et al. A high-dimensional model representation guided PSO methodology with application on compressor airfoil shape optimization. ASME Turbo Expo, 2016, no. GT2016-56741, V02CT45A013. DOI: https://doi.org/10.1115/GT2016-56741

[10] Ikeguchi T., Matsuoka A., Sakai Y., et al. Design and development of a 14-stage axial compressor for industrial gas turbine. ASME Turbo Expo, 2012, no. GT2012-68524, pp. 125--134. DOI: https://doi.org/10.1115/GT2012-68524

[11] Ling J., Du X., Wang S., et al. Relationship between optimum curved blade generate line and cascade parameters in subsonic axial compressor. ASME Turbo Expo, 2014, no. GT2014-25799, V02BT39A015. DOI: https://doi.org/10.1115/GT2014-25799

[12] IOSO optimization technology: website. Available at: http://www.iosotech.com (accessed: 12.04.2021).

[13] Marchukov E., Egorov I., Kretinin G., et al. Optimization of geometry blade for modern high pressure compressor. IOP Conf. Ser.: Mater. Sc. Eng., 2019, vol. 604, art. 012049. DOI: https://doi.org/10.1088/1757-899X/604/1/012049

[14] Kuzmenko M.L., Egorov I.N., Shmotin Y.N., et al. Improvement of the gas-turbine engine compressor using modern CFD technique and "IOSO NM" optimization software. 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conf., 2006, vol. 1, pp. 537--546. DOI: https://doi.org/10.2514/6.2006-6947

[15] Aulich A.-L., Goerke D., Blocher M., et al. Multidisciplinary automated optimization strategy on a counter rotating fan. ASME Turbo Expo, 2013, no. GT2013-94259, V06BT43A007. DOI: https://doi.org/10.1115/GT2013-94259

[16] Komarov O.V., Sedunin V.A., Blinov V.L. Application of optimisation techniques for new high-turning axial compressor profile topology design. ASME Turbo Expo, 2014, no. GT2014-25379, V02BT39A008. DOI: https://doi.org/10.1115/GT2014-25379

[17] Guo Z., Song L., Li J., et al. Research on meta-model based global design optimization and data mining methods. ASME Turbo Expo, 2015, no. GT2015-42554, V02CT45A007. DOI: https://doi.org/10.1115/GT2015-42554

[18] Benamara T., Breitkopf P., Lepot I., et al. LPC blade and non-axisymmetric hub profiling optimization using multi-fidelity non-intrusive POD surrogates. ASME Turbo Expo, 2017, no. GT2017-65106, V02CT47A026. DOI: https://doi.org/10.1115/GT2017-65106

[19] Shabliy L.S. Programmnoe sredstvo sozdaniya i modifikatsii komp’yuternykh modeley lopatok turbomashin Profiler [Profiler software tool for creating and modifying computer models of turbomachine blades]. Patent RU 2013617453. Appl. 17.06.2013, publ. 14.08.2013 (in Russ.).

[20] Baturin O.V., Popov G.M., Novikova Yu.D., et al. Programma parametricheskogo izmeneniya 3D form lopatok osevykh turbomashin Profiler 3D [Profiler 3D software for 3D shape parametric change of axial turbomachine blades]. Patent RU 2017613128. Appl. 27.10.2016, publ. 10.03.2017 (in Russ.).

[21] Flanders H. Elementary functions and analytic geometry. Elsevier, 1973.

[22] NUMECA: company website. Available at: https://www.numeca.com/home (accessed: 12.04.2021).

[23] Marchukov E., Egorov I., Popov G., et al. Optimization of a three spool axial compressor to increase the efficiency of a gas turbine engine. IOP Conf. Ser.: Mater. Sc. Eng., 2019, vol. 604, art. 012048. DOI: https://doi.org/10.1088/1757-899X/604/1/012048

[24] Marchukov E., Egorov I., Popov G., et al. Improving of the working process of axial compressors of gas turbine engines by using an optimization method. IOP Conf. Ser.: Mater. Sc. Eng., 2017, vol. 232, art. 012041. DOI: https://doi.org/10.1088/1757-899X/232/1/012041

[25] Goryahkin E., Popov G., Baturin O., et al. Three-stage low pressure compressor modernization by means of optimization methods. ASME Turbo Expo, 2015, no. GT2015-43384, V02CT45A017. DOI: https://doi.org/10.1115/GT2015-43384