Existing Concepts and Review of Experimental Studies of a Laser Rocket Engine

Authors: Ziganshin B.P., Sochnev A.V. Published: 26.03.2021
Published in issue: #1(136)/2021  

DOI: 10.18698/0236-3941-2021-1-20-52

Category: Aviation and Rocket-Space Engineering | Chapter: Thermal, Electric Jet Engines, and Power Plants of Aircrafts  
Keywords: laser rocket engine, ablation, optical discharge, pulsed optical discharge, laser propulsion

Currently, there is a problem of making engines for the exploration of near space, and one of the solutions to this problem is the use of a laser rocket engine. This type of engine has a number of advantages and, as calculations have shown, it is economically profitable during active operation, which is very important for space systems. The principle of operation of a laser rocket engine allows it to be used not only as a power plant and a system for launching spacecraft, but also as a system for the destruction of space debris, the problem of which is becoming more and more urgent every day. The paper shows the results of a review of domestic and foreign works on the history of creation and the concept of application of currently existing samples of laser rocket engines, on experimental data obtained by measuring the specific impulse and thrust, measurement methods, and describes the principle of operation and basic physical processes occurring in laser rocket engines

This work was supported by the grant "UMNIK-NTI" of the Foundation for Assistance to Small Innovative Enterprises no. 14732GU / 2019


[1] Tsiolkovskiy K.E. Izbrannye trudy [Selected works]. Moscow, Nauka Publ., 2007.

[2] Kashirin A.V., Glebanova I.I. Analysis of contemporary state of nanosatellites market as subversive innovation and its development possibility in Russia. Molodoy uchenyy [Young Scientist], 2016, pp. 855--867 (in Russ.).

[3] Danilkin A.P., Kozlov V.A. Global trends in the development of small satellites. Ekonomicheskie strategii [Economic Strategies], 2016, vol. 18, no. 6, pp. 136--149 (in Russ.). Available at: http://www.inesnet.ru/article/mirovye-tendencii-razvitiya-malyx-sputnikov

[4] Gopanchuk V.V., Potapenko M.Yu. Hall effect thrusters for small-sized spacecrafts. Vestnik Baltiyskogo federalʼnogo universiteta im. I. Kanta [IKBFUʼs Vestnik], 2012, no. 4, pp. 60--67 (in Russ.).

[5] Gusev Yu.G., Pil’nikov A.V. The electric propulsion role and place within the Russian space program. Trudy MAI, 2012, no. 60, pp. 1--20 (in Russ.). Available at: http://trudymai.ru/published.php?ID=35385

[6] Phipps C.R. Laser ablation propulsion and its applications in space. In: Advances in the Application of Lasers in Materials Science. Springer Ser. Mater. Sc., vol. 274. 2018. Springer, pp. 217--246. DOI: https://doi.org/10.1007/978-3-319-96845-2_8

[7] Pigulevski I. Laser propulsion market-creating innovation. New Space, 2016, vol. 4, no. 2, pp. 123--128. DOI: https://doi.org/10.1089/space.2015.0034

[8] Phipps C.R., Birkan M., Bohn W., et al. Review: laser-ablation propulsion. J. Propuls. Power, 2010, vol. 26, no. 4, pp. 609--637. DOI: https://doi.org/10.2514/1.43733

[9] Askar’yan G.A., Moroz E.M. Pressure at substance evaporation in radiation beam. ZhETF, 1962, vol. 43, no. 6, pp. 2319--2320 (in Russ.).

[10] Kantrowitz A. Propulsion to orbit by ground based lasers. Astronaut. Aeronaut., 1972, vol. 10, pp. 74--76.

[11] Bunkin F.V., Prokhorov A.M. Use of a laser energy source in producing a reactive thrust. Sov. Phys. Usp., 1976, vol. 19, no. 7, pp. 561--573. DOI: https://doi.org/10.1070/PU1976v019n07ABEH005273

[12] Ageev V.P., Barchukov A.I., Bunkin F.V., et al. Laser air-breathing jet engine. Sov. J. Quantum Electron., 1977, vol. 7, no. 12, pp. 1430--1437. DOI: https://doi.org/10.1070/QE1977v007n12ABEH008257

[13] Nebolsine P.E., Porridge A.N., Goela J.S., et al. Pulsed laser propulsion. AIAA J., 1981, vol. 19, no. 1, pp. 127--128. DOI: https://doi.org/10.2514/3.7754

[14] Phipps C.R., Bonnal C., Masson F., et al. Small payload transfers from earth to LEO and LEO to interplanetary space using lasers. Acta Astronaut., 2018, vol. 146, pp. 92--102. DOI: https://doi.org/10.1016/j.actaastro.2018.02.018

[15] Sattarov A.G. A concept of a spacecraft with small initial mass placed in the near-earth orbit by a laser rocket engine. Russ. Aeronaut., 2008, vol. 51, no. 2, pp. 166--172. DOI: https://doi.org/10.3103/S1068799808020104

[16] Humble W.E., Pierson B.L. Maximum-payload trajectories for a laser-propelled launch vehicle. J. Guid. Control Dyn., 1995, vol. 18, no. 6, pp. 1259--1266. DOI: https://doi.org/10.2514/3.21539

[17] Minami Y., Uchida S. Conceptual study of manned space transportation vehicle using laser thruster in combination with the H-II rocket. Acta Astronaut., 2013, vol. 82, no. 2, pp. 166--172. DOI: https://doi.org/10.1016/j.actaastro.2012.05.004

[18] Sochnev A.V. Issledovanie lazernogo raketnogo dvigatelya s konicheskim soplom na osnove impul’snogo opticheskogo razryada dlya kosmicheskikh apparatov s maloy nachal’noy massoy. Dis. kand. tekh. nauk [Study on laser rocket engine with a conical nozzle based on pulsed optical discharge for spacecraft with a small initial mass. Cand. Sc. (Eng.). Diss.]. Kazan, KNITU-KAI Publ., 2017 (in Russ.).

[19] Battiston R., Burger W.J., Cafagna A., et al. A systematic study of laser ablation for space debris mitigation. J. Space Saf. Eng., 2017, vol. 4, no. 1, pp. 36--44. DOI: https://doi.org/10.1016/j.jsse.2017.02.003

[20] Phipps C.R. LADROIT --- a spaceborne ultraviolet laser system for space debris clearing. Acta Astronaut., 2014, vol. 104, no. 1, pp. 243--255. DOI: https://doi.org/10.1016/j.actaastro.2014.08.007

[21] Vasile M., Gibbings A., Watson I., et al. Improved laser ablation model for asteroid deflection. Acta Astronaut., 2014, vol. 103, pp. 382--394. DOI: https://doi.org/10.1016/j.actaastro.2014.01.033

[22] Phipps C.R., Baker K.L., Libby S.B., et al. A laser-optical system to remove low earth orbit. 6th Europ. Conf. Space Debris., Darmstadt, 2013, pp. 22--25.

[23] Veniaminov S.S., Chervonov A.M. Kosmicheskiy musor --- ugroza chelovechestvu [Space debris --- a threat to mankind]. Moscow, IKI RAN Publ., 2013.

[24] Loktionov E.Y., Skobelev M.M. Possible utilization of space debris for laser propulsion. J. Phys.: Conf. Ser., 2019, vol. 1147, art. 012074. DOI: https://doi.org/10.1088/1742-6596/1147/1/012074

[25] Rezunkov Yu.A. Laser reactive thrust. Review of research. J. Opt. Technol., 2007, vol. 74, no. 8, pp. 526--535. DOI: https://doi.org/10.1364/JOT.74.000526

[26] Davis E.W., Mead F.B. Review of laser lightcraft propulsion system. Beamed energy propulsion. AIP Conf. Proc., 2008, vol. 997, no. 1, pp. 283--294. DOI: https://doi.org/10.1063/1.2931899

[27] Egorov M.S. Issledovanie i razrabotka bortovoy opticheskoy sistemy dlya malykh kosmicheskikh apparatov s lazernoy reaktivnoy tyagoy. Dis. kand. tekh. nauk [Study and development of an onboard optical system for small spacecraft with laser jet propulsion. Cand. Sc. (Eng.). Diss.]. St. Petersburg, ITMO Publ., 2016 (in Russ.).

[28] Appolonov V.V., Tishchenko V.N. Laser engine based on the resonance merging of shock waves. Quantum Electron., 2006, vol. 36, no. 7, pp. 673--683. DOI: https://doi.org/10.1070/QE2006v036n07ABEH013188

[29] Phipps C.R., Luke J.R., McDuff G.G., et al. Laser ablation powered mini-thruster. Proc. SPIE, 2002, vol. 4760, pp. 833--842. DOI: https://doi.org/10.1117/12.482038

[30] Dregalin A.F., Cherenkov A.S., Sattarov A.G., et al. Experimental and theoretical investigation of laser rocket engine characteristics based on a continuous optical discharge. Russ. Aeronaut., 2010, vol. 53, no. 4, pp. 427--435. DOI: https://doi.org/10.3103/S1068799810040094

[31] Vakhitov M.F., Kashapov N.F., Sattarov A.G. Calculation and theoretical study on gas flow in Laval nozzle of gas-dynamic window and in a chamber of laser power plants. Nizkotemperaturnaya plazma v protsessakh naneseniya funktsionalʼnykh pokrytiy [Low-temperature plasma in application process of functional coatings], 2010, vol. 1, no. 1, pp. 205--208 (in Russ.).

[32] Sattarov A.G., Bikmuchev A.R., Vakhitov M.F., et al. Studies of intra-chamber processes in power plants with use of optical discharges. Vestnik KGTU im. A.N. Tupoleva, 2009, no. 3, pp. 35--39 (in Russ.).

[33] Sattarov A.G. Laser jet propulsion based on the continuous optical discharge. Russ. Aeronaut., 2008, vol. 51, no. 3, pp. 293--299. DOI: https://doi.org/10.3103/S1068799808030100

[34] Phipps C.R., Luke J.R. Micro laser plasma thrusters for small satellites. Proc. SPIE, 2000, vol. 4065, pp. 801--809. DOI: https://doi.org/10.1117/12.407400

[35] Sattarov A.G., Sochnev A.V., Bikmuchev A.R. Static stability in the angular motion of an aircraft with a laser-induced spike conical nozzle. Russ. Aeronaut., 2018, vol. 61, no. 2, pp. 299--303. DOI: https://doi.org/10.3103/S1068799818020216

[36] Glemb R.D., Krier Kh. Method for calculating laser plasma in axisymmetric gas flow. Aerokosmicheskaya tekhnika, 1987, no. 6, pp. 133--139 (in Russ.).

[37] Dzheng S.M., Kifer D.R., Uelle R., et al. Laser plasma in argon flow. Aerokosmicheskaya tekhnika, 1988, no. 3, pp. 73--81 (in Russ.).

[38] Rayzer Yu.P., Silantʼyev A.Yu., Surzhikov S.T. Two-dimensional calculations of a continuous optical discharge in atmospheric-air flow (optical plasmatron). High Temp., 1987, vol. 25, no. 3, pp. 331--337.

[39] Surzhikov S.T. Radiative-convective heat transfer in an optical plasmotron chamber. High Temp., 1990, vol. 28, no. 6, pp. 926--932.

[40] Mirabo L., Rayzer Yu.P., Surzhikov S.T. Laser combustion waves in Laval nozzles. High Temp., 1995, vol. 33, no. 1, pp. 11--20.

[41] Sattarov A.G. A method for calculating a temperature field of multiple plasma formations in the laser rocket engine absorption chamber. Russ. Aeronaut., 2008, vol. 51, no. 4, art. 452. DOI: https://doi.org/10.3103

[42] Rayzer Yu.P., Surzhikov S.T. Investigation of the processes occurring in an optical plasmatron by numerical calculation. Sov. J. Quantum Electron., 1984, vol. 14, no. 11, pp. 1526--1532. DOI: https://doi.org/10.1070/QE1984v014n11ABEH006484

[43] Rayzer Yu.P., Surzhikov S.T. Continuous optical discharge burning at elevated pressures. Sov. J. Quantum Electron., 1988, vol. 18, no. 3, pp. 349--351. DOI: https://doi.org/10.1070/QE1988v018n03ABEH011517

[44] Prokhorov A.M., Konov V.I., Ursu I., et al. Vzaimodeystvie lazernogo izlucheniya s metallami [Interaction between laser radiation and metals]. Moscow, Nauka Publ., 1988.

[45] Klimkov Yu.V., Mayorov V.S., Khoroshev M.V. Vzaimodeystvie lazernogo izlucheniya s veshchestvom [Interaction between laser radiation and nmaterial]. Moscow, MIIGAiK Publ., 2014.

[46] Phipps C.R., Boustie M., Chevalier J.-M., et al. Laser impulse coupling measurements at 400 fs and 80 ps using the LULI facility at 1057 nm wavelength. J. Appl. Phys., 2017, vol. 122, no. 19, art. 193103. DOI: https://doi.org/10.1063/1.4997196

[47] Yu H., Li H., Wang Y., et al. Brief review on pulse laser propulsion. Opt. Laser Technol., 2018, vol. 100, pp. 57--74. DOI: https://doi.org/10.1016/j.optlastec.2017.09.052

[48] Phipps C.R., Luke J.R. Advantages of a ns-pulse micro-laser plasma thruster. AIP Conf. Proc., 2003, vol. 664, no. 1, pp. 230--239. DOI: https://doi.org/10.1063/1.1582112

[49] Sattarov A.G., Sochnev A.V. Research components of laser reactive thrust by means of regression equation second order. Vestnik KGTU im. A.N. Tupoleva, 2016, vol. 72, no. 1, pp. 32--39 (in Russ.).

[50] Sattarov A.G., Sochnev A.V., Bikmuchev A.R. Measurement of the momentum reactive force produced by a pulsed optical discharge by means of a ballistic pendulum. Trudy Akademenergo [Transactions of Academenergo], 2015, no. 1, pp. 75--82 (in Russ.).

[51] Zheng Z.Y., Zhang J., Lu X., et al. Characteristic investigation of ablative laser propulsion driven by nanosecond laser pulses. Appl. Phys. A, 2006, vol. 83, no. 2, pp. 329--332. DOI: https://doi.org/10.1007/s00339-006-3498-z

[52] Zheng Z.Y., Gao H., Gao L., et al. Laser plasma propulsion generation in nanosecond pulse laser interaction with polyimide film. Appl. Phys. A, 2014, vol. 115, no. 4, pp. 1439--1443. DOI: https://doi.org/10.1007/s00339-013-8060-1

[53] Jiao L., Cai J., Ma H.H., et al. Research on applications of rectangular beam in micro laser propulsion. Appl. Surf. Sс., 2014, vol. 301, pp. 481--487. DOI: https://doi.org/10.1016/j.apsusc.2014.02.107

[54] Zhang Y., Zhang D., Wu J., et al. A novel laser ablation plasma thruster with electromagnetic acceleration. Acta Astronaut., 2016, vol. 127, pp. 438--447. DOI: https://doi.org/10.1016/j.actaastro.2016.05.039

[55] Trezzolani F., Magarotto M., Manente M., et al. Development of a counterbalanced pendulum thrust stand for electric propulsion. Measurement, 2018, vol. 122, pp. 494--501. DOI: https://doi.org/10.1016/j.measurement.2018.02.011

[56] Yabe T., Phipps C., Yamaguchiet M., et al. Microairplane propelled by laser driven exotic target. Appl. Phys. Lett., 2002, vol. 80, no. 23, pp. 4318--4320. DOI: https://doi.org/10.1063/1.1485313

[57] Loktionov E.Yu., Protasov Yu.S., Protasov Yu.Yu. Verification of methods for evaluation of micro- and nano-Newton recoil momentum at solid tragets laser ablation. Uspekhi prikladnoi fiziki [Advaces in Applid Physics], 2013, vol. 1, no. 4, pp. 439--449 (in Russ.).

[58] Oigawa I., Akashi N., Hosokawa H., et al. A short-pulse laser assisted pulsed plasma thruster. 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conf., 2014. DOI: https://doi.org/10.2514/6.2014-3537

[59] Jamil Y., Saeed H., Raza Ahmad M., et al. Measurement of ablative laser propulsion parameters for aluminum, Co--Ni ferrite and polyurethane polymer. Appl. Phys. A, 2013, vol. 110, no. 1, pp. 207--210. DOI: https://doi.org/10.1007/s00339-012-7115-z

[60] Zheng Z.Y., Zhang J., Zhang Y., et al. Enhancement of coupling coefficient of laser plasma propulsion by water confinement. Appl. Phys. A, 2006, vol. 85, no. 4, pp. 441--443. DOI: https://doi.org/10.1007/s00339-006-3714-x

[61] Zheng Z.Y., Zhang J., Hao Z.Q., et al. Paper airplane propelled by laser plasma channels generated by femtosecond laser pulses in air. Opt. Express, 2005, vol. 13, no. 26, pp. 10616--10621. DOI: https://doi.org/10.1364/opex.13.010616

[62] Raza Ahmad M., Jamil Y., Saeed H., et al. A new perspective of ablative pulsed laser propulsion: Study on different morphologies of nano-structured ZnO. Laser Phys. Lett., 2015, vol. 12, no. 5, art. 56101. DOI: https://doi.org/10.1088/1612-2011/12/5/056101

[63] Sinko J.E., Gregory D.A. CO2-laser ablation impulse generation with polymer propellants. J. Propuls. Power, 2011, vol. 27, no. 5, pp. 1121--1130. DOI: https://doi.org/10.2514/1.B34072

[64] Nakano M., Fujita K., Uchida Sh., et al. Fundamental experiments on glycerin propellant laser thruster. AIP Conf. Proc., 2004, vol. 139, no. 1, pp. 139--145. DOI: https://doi.org/10.1063/1.1720994

[65] Zheng Z.Y., Zhang S.Q., Liang T., et al. Characterization of laser ablation of carbon-doped glycerol at different laser wavelengths. Appl. Phys. A, 2016, vol. 122, no. 12, art. 1062. DOI: https://doi.org/10.1007/s00339-016-0586-6

[66] Horisawa H., Kawakami M., Kimura I. Laser-assisted pulsed plasma thruster for space propulsion applications. Appl. Phys. A, 2005, vol. 81, no. 2, pp. 303--310. DOI: https://doi.org/10.1007/s00339-005-3210-8

[67] Zhang X., Cai J., Li L. Experimental investigation of the reflection mode micro laser propulsion under highly frequent and multi pulse laser. AIP Conf. Proc., 2011, vol. 1402, no. 1, pp. 383--390. DOI: https://doi.org/10.1063/1.3657045

[68] Wang B., Han T., Michigami K., et al. Thrust measurement of laser detonation thruster with a pulsed glass laser. AIP Conf. Proc., 2011, vol. 1402, no. 1, pp. 282--289. DOI: https://doi.org/10.1063/1.3657034

[69] Li X., Cheng M., Wang M., et al. Numerical study on impulse characteristics of laser-supported air-breathing pulsed detonation thrusters. P. I. Mech. Eng. G.-J. Aer. Eng., 2014, vol. 228, no. 8, pp. 1324--1335. DOI: https://doi.org/10.1177/0954410013490454

[70] Mori K., Maruyama R., Shimamura K. Energy conversion and momentum coupling of the sub-kJ laser ablation of aluminum in air atmosphere. J. Appl. Phys., 2015, vol. 118, no. 7, art. 073304. DOI: https://doi.org/10.1063/1.4928968

[71] Shi L., Zhao S.H., Chu X.C., et al. Effect of a simple double-confined structure on nanosecond pulse ablative laser propulsion. EPL, 2009, vol. 85, no. 5, art. 55001. DOI: https://doi.org/10.1209/0295-5075/85/55001

[72] Li L., Jiao L., Tang Z., et al. Effect of nozzle geometry on the performance of laser ablative propulsion thruster. App. Phys. A, 2016, vol. 122, no. 5, art. 511. DOI: https://doi.org/10.1007/s00339-016-0040-9

[73] Kenoyer D.A., Salvador I.I., Myrabo L.N. Beam-riding behavior of lightcraft engines with ∼ 1 μs pulsed TEA CO2-laser. AIP Conf. Proc., 2011, vol. 1402, no. 1, pp. 93--105. DOI: https://doi.org/10.1063/1.3657019

[74] Urech L., Hauer M., Lippert T., et al. Designed polymers for laser-based micro-thrusters: correlation of thrust with material, plasma, and shockwave properties (plenary paper). Proc. SPIE, 2004, vol. 5448. DOI: https://doi.org/10.1117/12.544771

[75] Urech L., Lippert T., Phipps C.R., et al. Polymers as fuel for laser-based micro-thrusters: an investigation of thrust, material, plasma and shockwave properties. Appl. Surf. Sс., 2007, vol. 253, no. 19, pp. 7646--7650. DOI: https://doi.org/10.1016/j.apsusc.2007.02.032