On Computing Losses in Blading Sections of Liquid Rocket Engine Pressurisation Stations
Authors: Zhuykov D.A., Zuev A.A., Tolstopyatov M.I. | Published: 23.12.2020 |
Published in issue: #6(135)/2020 | |
Category: Aviation and Rocket-Space Engineering | Chapter: Thermal, Electric Jet Engines, and Power Plants of Aircrafts | |
Keywords: pressurisation station, friction loss, friction drag, boundary layer, friction laws, turbopump |
Designing more sophisticated contemporary liquid rocket engines requires a precise understanding of the hydrodynamics in the blading sections of the pressurisation station, which is most often a turbopump. Friction loss in blade passages and outlets forms a significant proportion of all losses. The paper shows that it is necessary to account for the initial region of hydrodynamically unbalanced flow in the boundary layer, which is most characteristic of relatively short passages in blading sections of liquid rocket engine turbopumps. We performed the analysis required to select friction drag laws for components of pressurisation station blading sections. We considered and proposed a method for numerically integrating a system of equations to determine the variation in characteristic thickness of a spatial boundary layer and friction loss, accounting for the inertial component of the flow core velocity, depending on which flow modes occur in the components of pressurisation station blading sections in a liquid rocket engine. We show that it is necessary to correctly select the friction laws and to take the initial region into account so as to precisely determine the power parameters
References
[1] Lai F., Zhu X., Li G., et al. Numerical research on the energy loss of a single-stage centrifugal pump with different vaned diffuser outlet diameters. Energy Procedia, 2019, vol. 158, pp. 5523--5528. DOI: https://doi.org/10.1016/j.egypro.2019.01.592
[2] Jiang W., Li G., Liu P., et al. Numerical investigation of influence of the clocking effect on the unsteady pressure fluctuations and radial forces in the centrifugal pump with vaned diffuser. Int. Commun. Heat Mass Transf., 2016, vol. 71, pp. 164--171. DOI: https://doi.org/10.1016/j.icheatmasstransfer.2015.12.025
[3] Lorusso M., Capurso T., Torresi M., et al. Efficient CFD evaluation of the NPSH for centrifugal pumps. Energy Procedia, 2017, vol. 126, pp. 778--785. DOI:https://doi.org/10.1016/j.egypro.2017.08.262
[4] Wang C., Shi W., Wang X., et al. Optimal design of multistage centrifugal pump based on the combined energy loss model and computational fluid dynamics. Appl. Energy, 2017, vol. 187, pp. 10--26. DOI: https://doi.org/10.1016/j.apenergy.2016.11.046
[5] Bakhshan Y., Omidvar A. Calculation of friction coefficient and analysis of fluid flow in a stepped micro-channel for wide range of Knudsen number using Lattice Boltzmann (MRT) method. Physica A, 2015, vol. 440, pp. 161--175. DOI: https://doi.org/10.1016/j.physa.2015.08.012
[6] Basit M.A., Tian W., Chen R., et al. Numerical study of laminar flow and friction characteristics in narrow channels under rolling conditions using MPS method. NET, 2019, vol. 51, no. 8, pp. 1886--1896. DOI: https://doi.org/10.1016/j.net.2019.06.001
[7] Galaktionov A.Yu., Khlupnov A.I. Numerical calculation of unsteady aerodynamic characteristics of cylinder models for supersonic laminar flow. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2015, no. 5, pp. 4--13 (in Russ.). DOI: https://doi.org/10.18698/0236-3941-2015-5-4-13
[8] Afanas’ev V.N., Egorov K.S., Kong Dehai. Turbulence model validation during analysis of the turbulent boundary layer structure near a rectangular ridge on a plate. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2018, no. 6, pp. 72--89 (in Russ.).DOI: https://doi.org/10.18698/0236-3941-2018-6-72-89
[9] Martirosyan A.A., Mileshin V.I., Druzhinin Ya.M., et al. Сomputational and experimental investigation of aerodynamic characteristics of a counter-rotating fan using various software packages. Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering, 2019, no. 2, pp. 115--130 (in Russ.). DOI: https://doi.org/10.18698/0236-3941-2019-2-115-130
[10] Burger J., Haldenwang R., Alderman N. Friction factor-Reynolds number relationship for laminar flow of non-Newtonian fluids in open channels of different cross-sectional shapes. Chem. Eng. Sc., 2010, vol. 65, no. 11, pp. 3549--3556. DOI: https://doi.org/10.1016/j.ces.2010.02.040
[11] Zuev A.A., Kishkin A.A., Zhuikov D.A., et al. Energy equations for the temperature three-dimensional boundary layer for the flow within boundary conditions of turbo machinery. IOP Conf. Ser.: Mater. Sc. Eng., 2019, vol. 537, no. 2, art. 022008. DOI: https://doi.org/10.1088/1757-899x/537/2/022008
[12] Zuev A.A., Kishkin A.A., Zhuikov D.A., et al. Energy equations for the temperature three-dimensional boundary layer for the flow within boundary conditions of turbo machinery. IOP Conf. Ser.: Mater. Sc. Eng., 2019, vol. 537, no. 2, art. 022008. DOI: https://doi.org/10.1088/1757-899x/537/2/022008
[13] Zuev A.A., Arngold A.A., Tolstopyatov M.I., et al. Flow with heat transfer in a rotating cavity. IOP Conf. Ser.: Mater. Sc. Eng., 2019, vol. 537, no. 2, art. 022026. DOI: https://doi.org/10.1088/1757-899X/537/2/022026
[14] Zuev A.A., Nazarov V.P., Arngol’d A.A., et al. The method of the disk friction determining of low mass flow centrifugal pumps. Sibirskiy zhurnal nauki i tekhnologiy [Siberian Journal of Science and Technology], 2019, vol. 20, no. 2, pp. 219--227 (in Russ.). DOI: https://doi.org/10.31772/2587-6066-2019-20-2-219-227
[15] Zhuykov D.A., Nazarov V.P. Numerical simulation of the flow in the rotation cavities of turbopump assembly. Russ. Aeronaut., 2016, vol. 59, no. 1, pp. 138--144. DOI: https://doi.org/10.3103/S1068799816010220
[16] Zhuykov D.A., Nazarov V.P. Numerical simulation of the flow in the rotation cavities of turbopump assembly. Russ. Aeronaut., 2016, vol. 59, no. 1, pp. 138--144. DOI: https://doi.org/10.3103/S1068799816010220
[17] Shlikhting G. Teoriya pogranichnogo sloya [Theory of boundary layer]. Moscow, Nauka Publ., 1969.
[18] Kishkin A.A., Chernenko D.V., Chernenko E.V. Impulses equation of tree-dimensional boundary layer. Izvestiya vysshikh uchebnykh zavedeniy. Severo-Kavkazskiy region. Seriya: Tekhnicheskie nauki [Bulletin of Higher Educational Institutions. North Caucasus Region. Technical Sciences], 2007, no. 4, pp. 35--41 (in Russ.).
[19] Stepanov G.Yu. Gidrodinamika reshetok turbomashin [Hydrodynamics of turbomachine gates]. Moscow, FIZMATGIZ Publ., 1962.
[20] Kraev M.V., Kishkin A.A., Maydukov A.V. Disk rotation in a stream swirling according to law of solid body. Izvestiya vuzov. Aviatsionnaya tekhnika, 1996, no. 4, pp. 42--47 (in Russ.).
[21] Kishkin A.A., Zuev A.A., Chernenko E.V., et al. Liquid rotation over the motionless basis under the law of a solid body. Izvestiya vysshikh uchebnykh zavedeniy. Severo-Kavkazskiy region. Seriya: Tekhnicheskie nauki [Bulletin of Higher Educational Institutions. North Caucasus Region. Technical Sciences], 2007, no. 7, pp. 126--131 (in Russ.).
[22] Karman Th. Uber laminare und turbulente Reibung. ZAMM, 1921, vol. 1, no. 4, pp. 233--252. DOI: https://doi.org/10.1002/zamm.19210010401
[23] Emtsev B.T. Tekhnicheskaya gidrodinamika [Technical hydrodynamics]. Moscow, Mashinostroenie Publ., 1987.