Comprehensive Analysis of Fuel Efficiency for a Ramjet-Equipped Spaceplane

Authors: Svyatushenko V.V., Yagodnikov D.A. Published: 19.10.2020
Published in issue: #5(134)/2020  

DOI: 10.18698/0236-3941-2020-5-19-40

Category: Aviation and Rocket-Space Engineering | Chapter: Thermal, Electric Jet Engines, and Power Plants of Aircrafts  
Keywords: ramjet, spaceplane, fuel efficiency, hydrocarbon fuels, combustion efficiency

The paper considers fuels used as a working body in ramjets. The study aims to conduct a comprehensive examination that includes comparing physical, chemical and power characteristics of the fuels, as well as the results of thermodynamic and ballistic analyses, in order to ensure the best possible outcome in terms of layout and range of the spaceplane simulated. We analysed existing publications to state the main requirements for fuels to be used in spaceplane ramjets. We present a method of estimating fuel efficiency. The requirements developed for the spaceplane simulated were used to select a range of cryogenic hydrocarbons, for which we computed combustion efficiency and determined the thrust coefficient, specific impulse and flight range as functions of oxidizer-to-fuel ratio and flight velocity. We show that the hydrocarbon fuels under consideration manifest similar thrust, impulse response and trajectory characteristics, all other conditions being equal. Cryogenic methane displayed the best combustion efficiency, flight range and onboard fuel capacity. Given that methane is difficult to work with due to the low temperatures and increased pressure it requires, we propose using cryogenic propane as the main ramjet fuel type

The reported study was funded by RFBR, project number 19-38-90189


[1] Moskatov G.K. An intercontinental hypersonic liner’s safe flight to XXI century --- conceivable future. Nauchnyy vestnik OPK Rossii [Scientific Bulletin of the Military-Industrial Complex of Russia], 2016, no. 3, pp. 69--76 (in Russ.).

[2] Harris R.V.Jr. On the threshold --- the outlook for supersonic and hypersonic aircraft. Aircraft Design and Operations Meeting, 1989, vol. 29, no. 1, pp. 10--19. DOI: https://doi.org/10.2514/6.1989-2071

[3] Bratukhin A.G., Yanovskiy L.S., Lukovnikov A.V., et al. Evaluation the efficiency of the traditional fuel replacement in the main-line passenger aircrafts by the liquefied natural gas. Vestnik mashinostroeniya, 2011, no. 8, pp. 19--23 (in Russ.).

[4] Dulepov N.P., Lanshin A.I., Lukovnikov A.V., et al. Effectiveness of two-mode hypersonic ramjet engines in hybrid aerospace power units. Russ. Engin. Res., 2011, vol. 31, no. 8, pp. 764--770. DOI: https://doi.org/10.3103/S1068798X11080090

[5] Lukovnikov A.V. A conceptual design of aircraft propulsion systems in multidisciplinary statement. Vestnik MAI [MAI Aerospace Journal], 2008, no. 3, pp. 35--43 (in Russ.).

[6] Raznoschikov V.V., Chepanov A.I. The analysis of use cryogenic and gas fuel in aviation propulsion arterial planes. Nauchnyy vestnik MGTU GA [Civil Aviation High Technologies], 2008, no. 134, pp. 10--15 (in Russ.).

[7] Glushko V.P., ed. Termodinamicheskie i teplofizicheskie svoystva produktov sgoraniya [Thermodynamic and thermophysic properties of combustion products]. Moscow, AN SSSR Publ., 1971.

[8] Denisov E.T., Kovalev G.I. Okislenie i stabilizatsiya reaktivnykh topliv [Oxidation and stabilization of jet fuels]. Moscow, Khimiya Publ., 1983.

[9] Dubovkin N.F., Yanovskiy L.S., Kharin A.A., et al. Topliva dlya vozdushno-reaktivnykh dvigateley [Fuels for jet engines]. Moscow, MATI--RGTU im. K.E. Tsiolkovskogo Publ., 2001.

[10] Orlov B.V., ed. Osnovy proektirovaniya raketno-pryamotochnykh dvigateley dlya bespilotnykh letatel’nykh apparatov [Design fundamentals of rocket ramjets for unmanned aircraft]. Moscow, Mashinostroenie Publ., 1967.

[11] Lewis M.J., Gupta A. Impact of fuel selection on hypersonic vehicle optimization. Proc. 13th ISABE, 1997, vol. 2, pp. 1456--1463.

[12] Sargsyan D.R. Analysis experience of alternative fuels on aircraft. Nauchnyy vestnik MGTU GA [Civil Aviation High Technologies], 2011, no. 174, pp. 91--95 (in Russ.).

[13] Chuck C., Donnelly J. The compatibility of potential bioderived fuels with Jet A-1 aviation kerosene. Appl. Energy, 2014, vol. 118, pp. 83--91. DOI: https://doi.org/10.1016/j.apenergy.2013.12.019

[14] Yanovskiy L.S., Kharin A.A., Kirishev E.L. Problems of using cryogenic hydrocarbon fuels in high-speed aircraft. Dvigatelʼ, 2008, no. 5, p. 11 (in Russ.).

[15] Zrelov V.N., Seregin E.P. Zhidkie raketnye topliva [Liquid rocket fuels]. Moscow, Khimiya Publ., 1975.

[16] Kruchkov S.V., Savel’yev A.M Thermodynamic estimation of fuel efficiency for a high-speed ramjet running on hydrocarbon fuel with boron and beryllium hydride additives. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2017, no. 5, pp. 75--88 (in Russ.). DOI: https://doi.org/10.18698/0236-3941-2017-5-75-88

[17] Gany A. Effect of fuel properties on the specific thrust of a ramjet engine. Def. Sc. J., 2006, vol. 56, no. 3, pp. 321--328. DOI: https://doi.org/10.14429/dsj.56.1895

[18] Trusov B.G. [TERRA software for modelling phase and chemical equilibrium]. r. XIV Mezhdunar. konf. po khim. termodinamike [Proc. XIV Int. Conf. on Chemical Thermodynamics]. St. Petersburg, 2002 (in Russ.).

[19] Sorokin V.A., Yanovskiy L.S., Kozlov V.A., et al. Raketno-pryamotochnye dvigateli na tverdykh i pastoobraznykh toplivakh [Rocket ramjets on solid and paste-like fuels]. Moscow, FIZMATLIT Publ., 2010.

[20] Aver’kov N.S., Raznoschikov V.V., Yanovskiy L.S. Influence of fuel properties on the characteristics of an aircraft with air jet engine. Aviatsionnye dvigateli [Aviation Engines], 2018, no. 1, pp. 73--81 (in Russ.).

[21] Lebedev A.A., Chernobrovkin L.S. Dinamika poleta bespilotnykh letatel’nykh apparatov [Flight dynamics of unmanned aircraft]. Moscow, Mashinostroenie Publ., 1973.

[22] Zheleznyakova A.L. Numerical simulation of hypersonic external flow around model of vehicle X-51. Fiziko-khimicheskaya kinetika v gazovoy dinamike [Physical-chemical kinetics in gas dynamics], 2014, vol. 15, no. 2 (in Russ.). Available at: http://chemphys.edu.ru/issues/2014-15-2/articles/218/#ru_overview

[23] Zheleznyakova A.L., Surzhikov S.T. Numerical simulation of hypersonic flow past model of X-43 flying vehicle. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2010, no. 1, pp. 3--19 (in Russ.).

[24] Svyatushenko V.V. [Analytical and numerical calculation of thrust-pulse characteristics for manoeuvring aircraft with ram jet engine (M = 6)]. Raketno-kosmicheskie dvigatelʼnye ustanovki. Sb. mat. Vseros. nauch.-tekh. konf. [Proc. Russ. Sc.-Tech. Conf.]. Moscow, IIU MGOU Publ., 2018, pp. 75--76 (in Russ.).

[25] Kozubova M., Krutil’ Ya., Nevryan V. Experiments and mathematical models of methane flames and explosions in a complex geometry. Combust Explos Shock Waves., 2014, vol. 50, no. 4, pp. 374--380. DOI: https://doi.org/10.1134/S0010508214040029

[26] Machi M., Boudouris C., Gaab S., et al. Kinetic modeling of gas phase ethane and propane oxidative degydrogenation. Catal. Today, 2006, vol. 112, no. 1-4, pp. 53--59. DOI: https://doi.org/10.1016/j.cattod.2005.11.027

[27] Frazellia B., Riber E., Sanjos M., et al. A two-step chemical scheme for kerosene-air premixed flames. Combust. Flame, 2010, vol. 157, no. 8, pp. 1364--1373. DOI: https://doi.org/10.1016/j.combustflame.2010.03.014

[28] Aleksandrov V.Yu., Aref’yev K.Yu., Prokhorov A.N., et al. The method of experimental research into the efficiency of the working process in high speed solid fuel ramjet engines. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [Proceedings of Higher Educational Institutions. Маchine Building], 2016, no. 2, pp. 65--75 (in Russ.). DOI: https://doi.org/10.18698/0536-1044-2016-2-65-75

[29] Aref’yev K.Yu., Kukshinov N.V., Serpinskiy O.S. Methodology of experimental determining the combustion efficiency of fuel mixture flows in channels of variable cross-section. Fluid Dyn., 2017, vol. 52, no. 5, pp. 682--694. DOI: https://doi.org/10.1134/S0015462817050106

[30] Aleksandrov V.Yu., Kukshinov N.V. Modified combustion efficiency curve for high-velocity model combustors integrated with the inlet. Combust. Explos. Shock Waves, 2016, vol. 52, no. 3, pp. 281--285. DOI: https://doi.org/10.1134/S0010508216030047