|

Investigating the Specifics of Work Cycle Evolution in the Combustion Chamber of an Oxygen/Kerosene Liquid Rocket Engine

Authors: Mosolov S.V., Sidlerov D.A. Published: 22.04.2019
Published in issue: #2(125)/2019  

DOI: 10.18698/0236-3941-2019-2-34-46

 
Category: Aviation and Rocket-Space Engineering | Chapter: Thermal, Electric Jet Engines, and Power Plants of Aircrafts  
Keywords: liquid rocket engine, combustion chamber, numerical simulation, kerosene combustion

The paper considers the specifics of gasification, mixing and burnout processes for propellant components in a combustion chamber featuring coaxial bicentrifugal injectors and operating in the liquid/liquid mode employing oxygen and the T-1 and T-6 kerosene types. Numerical simulation revealed that when using the T6 fuel, the structure of recirculation zones appearing in the leading region of the combustion chamber may provide more efficient oxygen and kerosene mixing and burnout as compared to a chamber running on the T-1 fuel

References

[1] Sidlerov D.A. Numerical simulation of gas-droplet turbulent flow with combustion (Combust-LF). Registration certificate of computer program no. 2008610282, registered in 2007 (in Russ.).

[2] Sidlerov D.A. Numerical simulation of 3D gas-phase turbulent flows with combustion in liquid propellant system combuster (LRE flame-3D). Registration certificate of computer program no. 2010614904, registered in 2010 (in Russ.).

[3] Gutheil E., Schlots D., Demoulin F.-X., et al. Numerical approaches to spray combustion. 4th Int. Symp. Liquid Space Propulsion. Germany, DLR/Lmp, March 13–15, 2000.

[4] Tucker P.K., Shee W., et al. A global optimization methodology for O2/H2 single element injector design. 4th Int. Symp. Liquid Space Propulsion. Germany, DLR/Lmp, March 13–15, 2000.

[5] Novikov A.V., Yagodnikov D.A., Burkaltsev V.A., et al. Mathematical model and calculates the performance of the workflow in the combustion chamber rocket engine thrusters on the components of the methane-oxygen fuel. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2004, spec. iss. Theory and practice of modern rocket propulsion engineering, pp. 8–17 (in Russ.).

[6] Ruiz A. Unsteady numerical simulations of transcritical turbulent combustion in liquid rocket engines. PhD, Institut National Polytechnique de Toulouse, 2012.

[7] Yue C.G., Chang X.L., Yang S.J., et al. Numerical simulation of interior flow field of a variable thrust rocket engine. Adv. Mat. Res., 2011, vol. 186, pp. 215–219. DOI: 10.4028/www.scientific.net/AMR.186.215

[8] Wang Z.G. Internal combustion processes of liquid rocket engines. Modeling and numerical simulations. National Defense Industry Press, 2016.

[9] Strokach E.A., Borovik I.N. Numerical simulation of kerosene dispersion process by the centrifugal atomizer. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2016, no. 3, pp. 37–54 (in Russ.). DOI: 10.18698/0236-3941-2016-3-37-54

[10] Kalmykov G.P., Larionov A.A., Sidlerov D.A., et al. Numerical simulation and investigation of working process features in high-duty combustion chambers. J. Eng. Thermophys., 2008, vol. 17, no. 3, pp. 196–217. DOI: 10.1134/S1810232808030053

[11] Patankar S. Numerical heat transfer and fluid flow. CRC Press, 1980.

[12] Kalmykov G.P., Larionov A.A., Sidlerov D.A., et al. Numerical simulation of operational processes in the combustion chamber and gas generator of oxygen-methane liquid rocket engine. Progress in propulsion physic. Vol. 1. Moscow, Torus press Publ., 2009, pp. 185–204.

[13] Mosolov S.V., Sidlerov D.A., Ponomarev A.A., et al. Numerical research on the peculiarities of the operational process in LRE combustion chambers propelled by oxygen and hydrocarbons. Trudy MAI, 2012, no. 58 (in Russ.).

[14] Mosolov S.V., Sidlerov D.A., Ponomarev A.A. Comparative analyses of the peculiarities of the operational process in LRE combustion chambers with coaxial-jet and jet-centrifugal injectors using numerical simulation. Trudy MAI, 2012, no. 59 (in Russ.).

[15] Sidlerov D.A., Ponomarev A.A. Numerical simulation of fuel droplets evaporation and combustion regimes in the combustion chambers of liquid rocket engines. Trudy MAI, 2014, no. 77 (in Russ.).

[16] Mosolov S.V., Sidlerov D.A. Analysis of the characteristic features of operational process in liquid rocket engine combustion chamber with jet-centrifugal and centrifugal-centrifugal injectors. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2016, no. 2, pp. 60–71 (in Russ.). DOI: 10.18698/0236-3941-2016-2-60-71

[17] Mosolov S.V., Sidlerov D.A. Investigation of antipulsation partitions influence on the working process development in oxygen-kerosene LRE combustion chamber with jet-centrifugal injectors by numerical simulation. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2017, no. 2, pp. 44–53 (in Russ.). DOI: 10.18698/0236-3941-2017-2-44-53

[18] Dubovkin N.F., Malanicheva V.G., Massur Yu.P., et al. Fiziko-khimicheskie i ekspluatatsionnye svoystva reaktivnykh topliv [Physical-chemical and utilization properties of jet fuel]. Moscow, Khimiya Publ., 1985.

[19] Dityakin Yu.F., Klyachko L.A., Novikov B.V., et al. Raspylivanie zhidkostey [Spreading of liquids]. Moscow, Mashinostroenie Publ., 1977.