|

Investigation of Antipulsation Partitions Influence on the Working Process Development in Oxygen-Kerosene LRE Combustion Chamber with Jet-Centrifugal Injectors by Numerical Simulation

Authors: Mosolov S.V., Sidlerov D.A. Published: 12.04.2017
Published in issue: #2(113)/2017  

DOI: 10.18698/0236-3941-2017-2-44-53

 
Category: Aviation and Rocket-Space Engineering | Chapter: Thermal, Electric Jet Engines, and Power Plants of Aircrafts  
Keywords: liquid rocket engine, combustion chamber, numerical simulation, fuel burning

The study focuses on computational investigation of antipulsation partitions influence on the steady-state working process structure in oxygen-kerosene LRE combustion chamber with jet-centrifugal injectors. We examined two variants of chambers with identical injector arrangement. The first variant of chamber has no partitions, and thin partitions are mounted on the injector head of the second variant. Findings of the research show that installation of partitions in chambers with jet-centrifugal injectors may lead to increased temperature zone appearance in the corner between the side chamber wall and radial partition.

References

[1] Sidlerov D.A. Chislennoe modelirovanie gazokapel’nykh turbulentnykh techeniy s goreniem (Combust-LF) [Numerical simulation of gas-droplet turbulent flow with combustion (Combust-LF)]. Svidetel’stvo o gosudarstvennoy registratsii programmy dlya EVM № 2008610282 [Registration certificate of computer program no. 2008610282], registered in 2007.

[2] Sidlerov D.A. Chislennoe modelirovanie trekhmernykh gazofaznykh turbulentnykh techeniy s goreniem v kamerakh sgoraniya ZhRD (LRE flame-3D) [Numerical simulation of 3D gas-phase turbulent flows with combustion in liquid propellant system combuster (LRE flame-3D)]. Svidetel’stvo o gosudarstvennoy registratsii programmy dlya EVM № 2010614904 [Registration certificate of computer program no. 2010614904], registered in 2010.

[3] Gutheil E., Schlots D., et al. Numerical approaches to spray combustion. 4th Symposium on Liquid Space Propulsion. DLR/Lmp., Germany, March 13-15, 2000.

[4] Tucker P.K., Shee W., et al. A global optimization methodology for GO2/GH2 single element injector design. 4th Symposium on Liquid Space Propulsion. DLR/Lmp., Germany, March 13-15, 2000.

[5] Novikov A.V., Yagodnikov D.A., Burkal’tsev V.A., Lapitskiy V.I. Mathematical model and calculates the performance of the workflow in the combustion chamber rocket engine thrusters on the components of the methane-oxygen fuel. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. Spets. vyp. "Teoriya i praktika sovremennogo raketnogo dvigatelestroeniya" [Herald of the Bauman Moscow State Tech. Univ., Mech. Eng., Spec. Iss. "Theory and practice of modern rocket propulsion engineering"], 2004, pp. 8-17.

[6] Ruiz A. Unsteady numerical simulations of transcritical turbulent combustion in liquid rocket engines. PhD, Institut National Polytechnique de Toulouse, 2012.

[7] Yue Chun-guo, Chang Xin-long, Yang Shu-jun, Zhang You-hong. Numerical simulation of interior flow field of a variable thrust rocket engine. Advanced Materials Research, 2011, vol. 186, pp. 215-219. DOI: 10.4028/www.scientific.net/AMR.186.215 Available at: https://www.scientific.net/AMR.186.215

[8] Wang Zhen-guo. Internal combustion processes of liquid rocket engines: modeling and numerical simulations. National Defense Industry Press. 2016. DOI: 10.1002/9781118890035 Available at: http://onlinelibrary.wiley.com/book/10.1002/9781118890035;jsessionid=608EB60A578C8FD11FA183AA2927A569.f03t03

[9] Strokach E.A., Borovik I.N. Numerical simulation of kerosene dispersion process by the centrifugal atomizer. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mech. Eng.], 2016, no. 3, pp. 37-54. DOI: 10.18698/0236-3941-2016-3-37-54

[10] Kalmykov G.P., Larionov A.A., Sidlerov D.A., Yanchilin L.A. Numerical simulation and investigation of working process features in high-duty combustion chambers. Journal of Engineering Thermophysics, 2008, vol. 17, no. 3, pp. 196-217.

[11] Patankar S. Chislennye metody resheniya zadach teploobmena i dinamiki zhidkosti [Numerical solution of heat exchange and fluid dynamics problems]. Moscow, Energoatomizdat Publ., 1984. 148 p.

[12] Kalmykov G.P., Larionov A.A., Sidlerov D.A., Yanchilin L.A. Numerical simulation of operational processes in the combustion chamber and gas generator of oxygen-methane liquid rocket engine. EUCASS book Progress in Propulsion Physics, Torus press, 2009.

[13] Mosolov S.V., Sidlerov D.A., Ponomarev A.A., Smirnov Yu.L. Numerical research on the peculiarities of the operational process in LRE combustion chambers propelled by oxygen and hydrocarbons. Trudy MAI, 2012, no. 58. Available at: http://www.mai.ru/science/trudy/published.php?ID=33406

[14] Mosolov S.V., Sidlerov D.A., Ponomarev A.A. Comparative analyses of the peculiarities of the operational process in LRE combustion chambers with coaxial-jet and jet-centrifugal injectors using numerical simulation. Trudy MAI, 2012, no. 59. Available at: http://www.mai.ru/science/trudy/published.php?ID=34989

[15] Sidlerov D.A., Ponomarev A.A. Numerical simulation of fuel droplets evaporation and combustion regimes in the combustion chambers of liquid rocket engines. Trudy MAI, 2014, no. 77. Available at: http://www.mai.ru/science/trudy/published.php?ID=53138&eng=N

[16] Mosolov S.V., Sidlerov D.A. Analysis of the characteristic features of operational process in liquid rocket engine combustion chamber with jet-centrifugal and centrifugal-centrifugal injectors. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mech. Eng.], 2016, no. 2, pp. 60-71. DOI: 10.18698/0236-3941-2016-2-60-71