Nonstationary Intra-Chamber Processes in Solid-Propellant Controlled Propulsion System
Authors: Aliev A.V., Mishchenkova O.V., Cherepov I.V. | Published: 11.08.2016 |
Published in issue: #4(109)/2016 | |
Category: Aviation and Rocket-Space Engineering | Chapter: Thermal, Electric Jet Engines, and Power Plants of Aircrafts | |
Keywords: propulsion system, regulation, thermodynamic processes, disturbances resonant oscillations, Fourier analysis, wavelet analysis |
We consider the method for analysis of dynamic processes in the combustion chamber of a solid-propellant propulsion system. The method is based on constructing a mathematical model of intra-chamber processes. The following processes are formalized in this mathematical model: thermodynamic processes occurring in the body of the igniter device and in the chamber of the propulsion system, the heat exchange processes between the combustion products and the surface of the solid-propellant, the surface of the solid-propellant controlled propulsion system, the ignition process of the solid propellant and its subsequent nonstationary combustion. The mathematical model includes control equations recorded in view of backlash in the steering shaft rotation mechanism of the machine. We examine the stability of processes in a solid-propellant controlled propulsion system by the influence of random and periodic disturbances. Calculations of intra-chamber processes in a small controlled system are processed using Fourier and wavelet analysis, which makes it possible to establish the presence of resonance oscillations of different frequencies in the combustion chamber. These oscillations appear in certain work phases of solid-propellant controlled propulsion systems. When nonstationarity of fuel burning rate is taken into account, it increases the dynamic effects of intra-chamber processes.
References
[1] Bobylev V.M. Raketnyy dvigatel’ tverdogo topliva kak sredstvo upravleniya dvizheniem raket [The solid propellant rocket engine as a means to control rocket movement]. Moscow, Mashinostroenie Publ., 1992. 160 p.
[2] Prisnyakov V.F. Dinamika raketnykh dvigateley tverdogo topliva [Dynamics of solid propellant rocket engines]. Moscow, Mashinostroenie Publ., 1984. 248 p.
[3] Aliev A.V., Mishchenkova O.V. Matematicheskoe modelirovanie v tekhnike [Mathematical modeling in technology]. Moscow-Izhevsk, Inst. komp’yuternykh issledovaniy Publ., 2012. 476 p.
[4] Zarubin V.S. Matematicheskoe modelirovanie v tekhnike [Mathematical modeling in technology]. Moscow, MGTU im. N.E. Baumana Publ., 2003. 496 p.
[5] Samarskiy A.A. Mathematical modeling and computer experiment. Vestn. Akad. Nauk SSSR [Herald. Acad. Sci. SSSR], 1979, no. 5, pp. 38-49 (in Russ.).
[6] Solomonov Yu.S., Lipanov A.M., Aliev A.V. Tverdotoplivnye reguliruemye dvigatel’nye ustanovki. Spravochnaya biblioteka razrabotchika-issledovatelya. T. 9 [Solid propellant adjustable propulsion. Reference library of developer and researcher. Vol. 9]. Moscow, Mashinostroenie Publ., 2011. 416 p.
[7] Lipanov A.M., Bobryshev V.P., Aliev A.V. Chislennyy eksperiment v teorii RDTT [Numerical experiment in the theory of solid propellant rocket engines]. Ekaterinburg, Nauka Publ., 1994. 304 p.
[8] Sorkin R.E. Gazodinamika raketnykh dvigateley na tverdom toplive [Gas dynamics of solid propellant rocket engines]. Moscow, Nauka Publ., 1967. 368 p.
[9] Besekerskiy V.A., Popov E.P. Teoriya sistem avtomaticheskogo regulirovaniya [The theory of automatic control systems]. Moscow, Nauka Publ., 1972. 768 p.
[10] Aliev A.V., Blinov D.S. Gas-dynamic problems solutions for irregular shape areas with application of finite-volume algorithms for large particles method. Vestnik IzhGTU [Bulletin of Kalashnikov ISTU], 2009, no. 1 (41), pp. 151-154 (in Russ.).
[11] Aliev A.V. Paket prikladnykh programm "Tverdotoplivnyy dvigatel’". Katalog inno-vatsionnykh razrabotok Izhevskogo gos. tekh. univ. [Software package "Solid propellant rocket engines". Catalog of innovative developments of Kalashnikov Izhevsk State Technical University]. Izhevsk, IzhGTU Publ., 2001, p. 24.
[12] Milekhin Yu.M., Klyuchnikov A.N., Fedorychev A.V. Identifikatsiya eksperimental’noy zavisimosti skorosti goreniya tverdykh topliv ot davleniya. Raketnye dvigateli i problemy osvoeniya kosmicheskogo prostranstva. T. 1 [Identification of the experimental dependence of solid propellant combustion rate on the pressure. Rocket engines and challenges of space exploration. Vol. 1]. Moscow, Torus Press, 2005, pp. 260-262.
[13] Aliev A.V., Mishchenkova O.V., Peremyslovskaya A.G., Cherepova E.V. Identification of mathematical models of solid-propellant propulsion device with usage of experimental Results. Vestnik IzhGTU [Bulletin of Kalashnikov ISTU], 2008, no. 2, pp. 45-47 (in Russ.).
[14] Zel’dovich Ya.B., Leypunskiy O.I., Librovich V.B. Teoriya nestatsionarnogo goreniya porokha [The theory of unsteady gunpowder burning]. Moscow, Nauka Publ., 1975. 131 p.
[15] Novozhilov B.V. Nestatsionarnoe gorenie tverdykh raketnykh topliv [Unsteady solid rocket propellant burning]. Moscow, Nauka Publ., 1973. 176 p.
[16] Hamming R.W. Numerical Methods for Scientists and Engineers. N.Y., McCraw-Hill, 1973.
[17] Daubechies I. Ten Lectures on Wavelets. Springer-Verlag, 1992.