Experimental studies of film nozzles functioning process with the liquid film gasification
Authors: Kuznetsov A.V., Medvetskiy S.V., Ivashov A.I., Zelentsov V.V., Bykov N.V. | Published: 29.03.2016 |
Published in issue: #2(107)/2016 | |
Category: Aviation and Rocket-Space Engineering | Chapter: Thermal, Electric Jet Engines, and Power Plants of Aircrafts | |
Keywords: liquid film gasification, moisture of gas-liquid medium, nozzle, liquid jet |
The aim of this work is to develop bench equipment and perform experimental studies of film nozzles functioning process with the liquid film gasification. The findings of the research illustrate the following parameters: the relation between the median droplet diameter and the fluid pressure at the nozzle inlet, the air pressure at the nozzle inlet, nozzle cavity pressure, fluid flow rate, air and liquid flow rate. As a result of experimental data processing, we revealed qualitative and quantitative relation between the hydro- and gasodynamic values of the gas-saturated film and modes of liquid and air supply in the cavity of a gas-liquid injector. The results obtained in designing the film nozzles with liquid film gasification will give an opportunity to significantly improve their performance.
References
[1] Semenov V.P., Platonov N.I. The Analysis of Heat Transform in a Contact Film Jet Apparatus. Vestnik Yuzhno-Ural’skogo gos. univ. Ser. Energetika [Bulletin of South Ural State University. Ser. Power Engineering], 2008, no. 26 (126), pp. 10-13 (in Russ.).
[2] Khodyrev A.I., Kulikov S.A. Spray Atomization and Equipment for its Implementation in Oil and Gas Recovery. Territoriya Neftegaz (Oil and Gas Territory), 2011, no. 3, pp. 42-45 (in Russ.).
[3] Evstigneev V.V., Es’kov A.V., Klochkov A.V. The System for Control of the Size-Consist of the Atomized Fuel Stream Drops. Polzunovsky vestnik, 2006, no. 4, pp. 5863 (in Russ.).
[4] Raushenbakh B.V., Belyy S.A., Bespalyy I.B., Borodachev V.Ya., Volynskiy M.S., Prudnikov A.G. Fizicheskie osnovy rabochego protsessa v kamerakh sgoraniya vozdushno-reaktivnykh dvigateley [Principal Physics of the Working Process in the Jet Engine Combustion Chambers]. Moscow, Mashinostroenie Publ., 1964. 525 p.
[5] Arkhipov V.A., Bondarchuk S.S., Evsevleev M.Ya., Zharova I.K., Zhukov A.S., Zmanovskiy S.V., Kozlov E.A., Konovalenko A.I., Trofimov V.F. Experimental Investigation of the Dispersion of Liquids by Ejection Atomizers. Journal of Engineering Physics and Thermophysics, 2013, vol. 86, iss. 6, pp. 1306-1314.
[6] Gelfand B.E., Silnikov M.V., Takayama K. Razrushenie kapel’ zhidkosti [Liquid Droplet Breakup]. St. Petersburg, Politekh. Univ. Publ., 2008. 307 p.
[7] Kuznetsov A.V., Zelentsov V.V., Ivashov A.I., Bezdomnikov A.V. Features of Initial Operation Phase for Film Nozzle with Gasifying of the Liquid Film. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mech. Eng.], 2014, no. 5, pp. 33-45 (in Russ.).
[8] Kuznetsov A.V. Mathematical model of the interaction process of a single unsteady supersonic jet with moving obstacle of finite dimensions. Izv. Vyssh. Uchebn. Zaved., Aviats. Tekh. [Russ. Aeronaut.], 1986, no. 1, pp. 27-29 (in Russ.).
[9] Pazhi D.G., Galustov V.S. Osnovy tekhniki raspylivaniya zhidkostey [Basic Techniques of Liquid Atomization]. Moscow, Khimiya Publ., 1984. 256 p.
[10] Krasilov V.F. Spravochnik po gidrogazodinamike [Handbook of Fluid Dynamics]. Moscow, MEI Publ., 1992. 99 p.