Solar Thermal Propulsion Concept Featuring Phase-Change Latent Heat Storage and Subsequent Hydrogen Burning in Fluorine

Authors: Finogenov S.L. Published: 14.06.2018
Published in issue: #3(120)/2018  

DOI: 10.18698/0236-3941-2018-3-30-49

Category: Aviation and Rocket-Space Engineering | Chapter: Innovation Technologies of Aerospace Engineering  
Keywords: solar thermal propulsion, latent heat storage, phase-change materials, subsequent hydrogen burning, fluorine, spacecraft, geostationary orbit, spa-cecraft

We consider the concept of solar thermal propulsion featuring latent heat storage based on a phase-change binary boron and silicon eutectic alloy, the thermophysical properties of which allow it to be used in an isothermal system comprising a mirror solar concentrator, a sunlight absorber and latent heat storage. We analysed the potential for decreasing the mass and size of the system described above when the hydrogen heated in it is subsequently burned in fluorine, which significantly decreases the mass flow rate of heated hydrogen that must ensure the burn required. We provide mass and power characteristics of spacecraft featuring solar thermal propulsion for the geostationary orbit insertion problem and interorbital transfer time in the range of 20 to 90 days. We present a mathematical model of operation of a complex engineering system consisting of a spacecraft and solar thermal propulsion, and an algorithm for optimising relevant parameters of the system consisting of a concentrator, a sunlight absorber and latent heat storage that takes into account ballistic properties of a multi-burn trajectory with active apsidal segments, as well as partial transfer orbit shadowing conditions. We show rational oxidizer-to-fuel ratios as a function of geostationary orbit insertion time. We evaluate preferential use of spacecraft equipped with the propulsion system considered as compared to alternative means of interorbital transfer


[1] Kudrin O.I. Solnechnye vysokotemperaturnye kosmicheskie energodvigatelnye ustanovki [Solar high-temperature space power plants]. Moscow, Mashinostroenie Publ., 1987. 247 p.

[2] Frye P.E., Kennedy F.G. Reusable orbital transfer vehicles (ROTV) applications of an integrated solar upper stage (ISUS). Journal of Propulsion and Power, 1998, vol. 14, no. 6, pp. 1059–1064. DOI: 10.2514/2.5374

[3] Hawk C.W., Adams A.M. Conceptual design of a solar thermal upper stage (STUS) flight experiment. 31st Joint Propulsion Conf. and Exhibit, 1995, AIAA Paper no. 95-2842. DOI: 10.2514/6.1995-2842

[4] Engberg R.C., Lassiter J.O., McGee J.K. Modal survey test of the SOTV 2×3 meter off-axis inflatable concentrator. 41st Structures, Structural Dynamics, and Materials Conf. and Exhibit, 2000, AIAA Paper no. 00-1639. DOI: 10.2514/6.2000-1639

[5] Leenders H.C.M., Zandbergen B.T.C. Development of a solar thermal thrusters system. 59th IAC Congress, 2008. Paper IAC-08-D1.1.01.

[6] Wassom S.R., Lester D.M., Farmer G., Holmes M. Solar thermal propulsion IHPRPT demonstration program status. 37th Joint Propulsion Conf. and Exhibit, 2001, AIAA Paper no. 2001-3735. DOI: 10.2514/6.2001-3735

[7] Gilpin M.R., Scharfe D.B., Young M.P., Webb R. Experimental investigation of latent heat thermal energy storage for bi-modal solar thermal propulsion. 12th Int. Energy Conversion Engineering Conf., 2014, AIAA Paper no. 2014-3832. DOI: 10.2514/6.2014-3832

[8] Koroteev A.S., et al. Kick stages with solar heat propulsion systems for increase of middle-class Soyuz launchers competitiveness. Proc. of the 6th Int. Symp. on Propulsion for Space Transportation, 2002. Paper no. S36.2.

[9] Fedik I.I., Stepanov V.S., Yakubov V.Ya. [Accumulators of electrical and thermal energy based on phase transitions]. Sb. nauch. dokladov II Mezhdunar. soveshchaniya po problemam energoakkumulirovaniya i ekologii v mashinostroenii, energetike i na transporte [Proc. II Int. Conf. on Problems of Energy Storage and Ecology in Mechanical Engineering, Energetic and Transport]. Moscow, IMASh RAS Publ., 2001. P. 17–25.

[10] Fedik I.I., Popov E.B. [Power-propulsion plant based on solar thermal storage]. Sbornik nauchnykh dokladov III Mezhdunar. soveshchaniya po problemam energoakkumulirovaniya i ekologii v mashinostroenii, energetike i na transporte [Proc. III Int. Conf. on Problems of Energy Storage and Ecology in Mechanical Engineering, Energetic and Transport]. Moscow, IMASh RAS Publ., 2002. P. 282–292.

[11] Finogenov S.L., Kolomentsev A.I. The choice of heat-accumulating materials for solar thermal propulsion. Sibirskiy zhurnal nauki i tekhnologiy [Scientific Journal of Science and Technology], 2016, vol. 17, no. 1, pp. 161–169 (in Russ.).

[12] Finogenov S.L., Kolomentsev A.I. Parameters selection of solar thermal rocket engine under flight time limitation. Vestnik MAI, 2016, vol. 23, no. 3, pp. 58–68 (in Russ.).

[13] Finogenov S.L., Kolomentsev A.I, Kudrin O.I. Use of different oxidizers for afterburning of hydrogen heated by solar energy in rocket engine. Sibirskiy zhurnal nauki i tekhnologiy [Scientific Journal of Science and Technology], 2015, vol. 16, no. 3, pp. 680–689 (in Russ.).

[14] Finogenov S.L., Kolomentsev A.I., Konstantinov M.S. Performances of spacecraft with solar thermal propulsion. Vestnik KGTU im. A.N. Tupoleva [Vestnik of KNRTU n. a. A.N. Tupolev], 2017, no. 2 (73), pp. 62–69 (in Russ.).

[15] Safranovich V.F., Emdin L.M. Marshevye dvigateli kosmicheskikh apparatov. Vybor tipa i parametrov [Sustainer engines for space vehicles. Choice of type and parameters]. Moscow, Mashinostroenie Publ., 1980. 240 p.

[16] Agulnik A.B. Metodologiya sistemnogo analiza aviatsionnykh gazoturbinnykh dvigateley slozhnykh skhem. Avtoref. diss. dok. tekhn. nauk [System analysis methodology of aircraft complex system motors. Abs. doc. tech. sci. diss.]. Moscow, MAI Publ., 2001. 38 p.

[17] Grilikhes V.A., Matveev V.M., Poluektov V.P. Solnechnye vysokotemperaturnye istochniki tepla dlya kosmicheskikh apparatov [Solar high-temperature heat sources for space vehicles]. Moscow, Mashinostroenie Publ., 1975. 248 p.

[18] Levenberg V.D. Energeticheskie ustanovki bez topliva [Power plants without fuel]. Leningrad, Sudostroenie Publ., 1987. 104 p.

[19] Boykachev V.N., Gusev Yu.G., Zhasan V.S., et al. On the possibility to develop a 10 to 30 kW electric propulsion system based on dual-mode thruster SPD-140D. Kosmicheskaya tekhnika i tekhnologii [Space technique and technologies], 2014, no. 1 (4), pp. 48–59 (in Russ.).

[20] Finogenov S.L., Kolomentsev A.I. Nonisothermal concentrator-absorber system performances for solar thermal propulsion. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2017, no. 2, pp. 66–83 (in Russ.). DOI: 10.18698/0236-3941-2017-2-66-83

[21] Belik A.A., Egorov Yu.G., Kulkov V.M., Obukhov V.A. Combined schemes of insertion of spacecrafts into GEO using middle-class launchers design-ballistic analysis. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya [Aerospace Technic and Technology], 2011, no. 4 (81), pp. 17–21 (in Russ.).