|

Computational Analysis of Aerodynamics and Thermodynamics for the X-51 High-Velocity Aircraft

Authors: Silvestrov P.V., Surzhikov S.T. Published: 19.10.2020
Published in issue: #5(134)/2020  

DOI: 10.18698/0236-3941-2020-5-41-57

 
Category: Aviation and Rocket-Space Engineering | Chapter: Aerodynamics and Heat Transfer Processes in Aircrafts  
Keywords: gas dynamics, mathematical simulation, computational aerodynamics, unstructured meshes, Advection-Upstream-Splitting-Method, cross-validation, custom hydrocodes

The paper presents a numerical investigation of aero-dynamic coefficients for a model of an X-51-type high-velocity aircraft moving at Mach 6. The simulation made use of the original and modified versions of our custom hydrocodes (UST3D and UST3D-AUSMPW) designed for numerical simulation of aerodynamics and thermodynamics in high-velocity aircraft of arbitrary shapes. Such hydrocodes implement a model of viscous compressible thermally conductive gas described by a non-steady-state spatial system of Navier --- Stokes equations solved over unstructured three-dimensional tetrahedral meshes. The paper considers the theoretical aspects of simulating the aerodynamics and thermodynamics of high-velocity aircraft numerically. We describe the method for computing mass flow through mesh cell boundaries implemented in the modified custom hydrocode version. We performed cross-validation of the results obtained using our custom hydrocodes and compared our hydrocodes in terms of result convergence time. We show that these custom hydrocodes ensure adequately accurate distribution patterns concerning the fields of the values sought, and provide high-precision computation of aerodynamic characteristics as compared to each other

References

[1] Schmisseur J.D. A hypersonics into the 21st century: a perspective on AFOSR-sponsored research in aerothermodynamics. 43rd AIAA Fluid Dynamics Conf., 2013. DOI: https://doi.org/10.2514/6.2013-2606

[2] Bertin J. Hypersonic aerothermodynamics. AIAA, 1994.

[3] Lunev V.V. Giperzvukovaya aerodinamika [Hypersonic aerodynamics]. Moscow, Mashinostroenie Publ., 1975.

[4] Anderson J. Hypersonic and high-temperature gas dynamics. AIAA, 2006.

[5] Zheleznyakova A.L., Surzhikov S.T. Application of the method of splitting by physical processes for the computation of a hypersonic flow over an aircraft model of complex configuration. High Temp., 2013, vol. 51, no. 6, pp. 816--829. DOI: https://doi.org/https://doi.org/10.1134/S0018151X13050234

[6] Zheleznyakova A.L., Surzhikov S.T. Calculation of a hypersonic flow over bodies of complex configuration on unstructured tetrahedral meshes using the AUSM scheme. High Temp., 2014, vol. 52, no. 2, pp. 271--281. DOI: https://doi.org/10.1134/S0018151X14020217

[7] Surzhikov S.T. Validation of computational code UST3D by the example of experimental aerodynamic data. J. Phys.: Conf. Ser., 2017, vol. 815, art. 012023. DOI: https://doi.org/10.1088/1742-6596/815/1/012023

[8] Yatsukhno D.S., Surzhikov S.T. Method for splitting into physical processes in task of the flow over a perspective high-speed vehicle modelling. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2018, no. 1, pp. 20--33 (in Russ.). DOI: https://doi.org/10.18698/0236-3941-2018-1-20-33

[9] Surzhikov S.T. Komp’yuternaya aerofizika spuskaemykh kosmicheskikh apparatov. Dvukhmernye modeli [Computer aerophysics of descent spacecraft. 2D models]. Moscow, FIZMATLIT Publ., 2018.

[10] Surzhikov S.T. Aerophysics of the hypersonic air flow above surface of space vehicle at altitudes of less than 60 km. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sc.], 2016, no. 5, pp. 33--45 (in Russ.). DOI: https://doi.org/10.18698/1812-3368-2016-5-33-45

[11] Zabarko D.A., Kotenev V.P. Numerical study of laminar flows of viscid chemically-reactive gas near blunted bodies. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sc.], 2006, no. 1, pp. 77--95 (in Russ.).

[12] Kryuchkova A.S. Development and testing of non-viscid solver based on UST3D programming code. J. Phys.: Conf. Ser., 2019, vol. 1250, art. 012009. DOI: https://doi.org/10.1088/1742-6596/1250/1/012009

[13] Belotserkovskiy O.M., Davydov Yu.M. Metod krupnykh chastits v gazovoy dinamike [Large particles method in gas dynamics]. Moscow, Nauka Publ., 1982.

[14] Roache P.J. Computational fluid dynamics. Albuquerque, Hermosa Publ., 1976.

[15] Liou M.S., Steffen C. A new flux splitting scheme. J. Comput. Phys., 1993, vol. 107, no. 1, pp. 23--39. DOI: https://doi.org/10.1006/jcph.1993.1122

[16] Liou M.S. A sequel to AUSM: AUSM+. J. Comput. Phys., 1996, vol. 129, no. 2, pp. 364--382. DOI: https://doi.org/10.1006/jcph.1996.0256

[17] Wada Y., Liou M.S. An accurate and robust flux splitting scheme for shock and contact discontinues. SISC, 1997, vol. 18, no. 3, pp. 633--657. DOI: https://doi.org/10.1137/S1064827595287626

[18] Liou M.S. A sequel to AUSM, part II: AUSM+-up. J. Comput. Phys., 2006, vol. 214, no. 1, pp. 137--170. DOI: https://doi.org/10.1016/j.jcp.2005.09.020

[19] Edwards J.R., Franklin R., Liou M.-S. Low-diffusion flux-splitting methods for real fluid flows with phase transitions. AIAA J., 2000, vol. 38, no. 9, pp. 1624--1633. DOI: https://doi.org/10.2514/2.1145

[20] Chang C.H., Liou M.S. A new approach to the simulation of compressible multifluid flows with AUSM+ scheme. 16th AIAA CFD Conf., 2003. DOI: https://doi.org/10.2514/6.2003-4107

[21] Edwards J.R., Liou M.S. Low-diffusion flux-splitting methods for flows at all speeds. AIAA J., 1998, vol. 36, no. 9, pp. 1610--1617. DOI: https://doi.org/10.2514/2.587

[22] Kim K., Kim C., Rho O.H. Methods for the accurate computations of hypersonic flows I. AUSMPW+ scheme. J. Comput. Phys., 2001, vol. 174, no. 1, pp. 38--80. DOI: https://doi.org/10.1006/jcph.2001.6873

[23] Van Leer B. Flux-vector splitting for the Euler equations. 8th Int. Conf. Num. Meth. Fluid Dyn. Springer, 1982, pp. 507--512.

[24] Liou M.S., Wada Y. A flux splitting scheme with high-resolution and robustness for discontinuities. 32nd Aerospace Sciences Meeting and Exhibit, 1994. DOI: https://doi.org/10.2514/6.1994-83

[25] Anderson D., Tannehill J.C., Pletcher R.H. Computational fluid mechanics and heat transfer. Hemisphere, 1985.