Numerical Simulation of the HIFiRE-1 Ground Test

Authors: Silvestrov P.V., Surzhikov S.T. Published: 06.06.2020
Published in issue: #3(132)/2020  

DOI: 10.18698/0236-3941-2020-3-29-46

Category: Aviation and Rocket-Space Engineering | Chapter: Aerodynamics and Heat Transfer Processes in Aircrafts  
Keywords: gas dynamics, mathematical simulation, computation aerodynamics, software packages, unstructured meshes, cone--cylinder--flare

The paper considers the problem of simulating the HIFiRE-1 ground test numerically. The aircraft geometry is represented by either a pointed or a blunted cone combined with a flared cylinder. Our digital simulation investigated the aerodynamics of two aircraft configurations: one featuring a pointed nose, another featuring a blunted nose with a radius of 2.5 mm. We used the UST3D software developed in the Ishlinsky Institute for Problems in Mechanics RAS, to perform our aerodynamic calculations. The software is specifically designed for numerical simulations of aerodynamics and thermodynamics in high-velocity aircraft. It implements a model of viscous compressible thermally conductive gas described by a non-steady-state spatial system of Navier --- Stokes equations solved over unstructured three-dimensional tetrahedral meshes. We compared the numerical simulation results in the form of pressure distribution in the tail segment of the aircraft to the empirical data obtained via ground tests in a wind tunnel. We analysed result convergence as a function of the mesh density used. We used methods of computational aerodynamics to investigate the turbulent flow field over the computation region from the leading shock wave to the far wake for various Mach numbers and attack angles


[1] Neyland V.Ya., Bogolepov V.V., Dudin G.N., et al. Asimptoticheskaya teoriya sverkhzvukovykh techeniy vyazkogo gaza [Asymptotic theory of supersonic viscous gas flows]. Moscow, Fizmatlit Publ., 2003.

[2] Lunev V.V. Giperzvukovaya aerodinamika [Hypersonic aerodynamics]. Moscow, Mashinostroenie Publ., 1975.

[3] Surzhikov S.T. Raschetnoe issledovanie aerotermodinamiki giperzvukovogo obtekaniya zatuplennykh tel na primere analiza eksperimentalʼnykh dannykh [Computational study of the hypersonic flow aerothermodynamics around blunt bodies the case of experimental data analysis]. Moscow, IPMech RAS Publ., 2011.

[4] Zheleznyakova A.L., Surzhikov S.T. Application of the method of splitting by physical processes for the computation of a hypersonic flow over an aircraft model of complex configuration. High Temp., 2013, vol. 51, no. 6, pp. 816--829. DOI: https://doi.org/10.1134/S0018151X13050234

[5] Zheleznyakova A.L., Surzhikov S.T. Numerical simulation of flow field at descent vehicle entry into Earth’s atmosphere. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2009, no. 2, pp. 3--25 (in Russ.).

[6] Surzhikov S.T. Validation of computational code UST3D by the example of experimental aerodynamic data. J. Phys.: Conf. Ser., 2017, vol. 815, art. 012023.DOI: https://doi.org/10.1088/1742-6596/815/1/012023

[7] Yatsukhno D.S., Surzhikov S.T. Method for splitting into physicall processes in task of the flow over a perspective high-speed vehicle modelling. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2018, no. 1, pp. 20--33 (in Russ.). DOI: https://doi.org/10.18698/0236-3941-2018-1-20-33

[8] Zheleznyakova A.L., Surzhikov S.T. Numerical simulation of hypersonic flow around cylinder. Fiziko-khimicheskaya kinetika v gazovoy dinamike [Physical-Chemical Kinetics in Gas Dynamics], 2008, vol. 7 (in Russ.). Available at: http://chemphys.edu.ru/issues/2008-7/articles/470

[9] Johnson H.B., Alba C.R., Candler G.V., et al. Boundary-layer stability analysis of the hypersonic international flight research transition experiments. J. Spacecr. Rockets, 2008, vol. 45, no. 2, pp. 228--236. DOI: https://doi.org/10.2514/1.31878

[10] Kimmel R.L., Adamczak D., Gaitonde D., et al. HIFiRE-1 boundary layer transition experiment design. 45th AIAA Aerospace Sc. Meeting and Exhibit, 2007. DOI: https://doi.org/10.2514/6.2007-534

[11] Wadhams T.P., Mundy E., MacLean M.G., et al. Ground test studies of the HIFiRE-1 transition experiment. Part 1: experimental results. J. Spacecr. Rockets, 2008, vol. 45, no. 6, pp. 1134--1148. DOI: https://doi.org/10.2514/1.38338

[12] MacLean M.G., Wadhams T.P., Holden M., et al. Ground test studies of the HIFiRE-1 transition experiment. Part 2: computational analysis. J. Spacecr. Rockets, 2008, vol. 45, no. 6, pp. 1149--1164. DOI: https://doi.org/10.2514/1.37693

[13] Marvin J.G., Brown J.L., Gnoffo P.A. Experimental database with baseline CFD solutions: 2-D and axisymmetric hypersonic shock-wave/turbulent-boundary-layer interactions. AIAAJ, 2016, vol. 54, no. 5, pp. 39--47. DOI: https://doi.org/10.2514/1.J054505

[14] Li F., Choudhari M., Chang C.L., et al. Transition analysis for the HIFiRE-1 flight experiment. 41st AIAA Fluids Dynamics Conf., 2011. DOI: https://doi.org/10.2514/6.2011-3414

[15] Stanfield S.A., Kimmel R.L., Adamczak D.W. HIFiRE-1 flight data analysis: turbulent shock-boundary-layer interaction experiment during ascent. 42nd AIAA Fluid Dynamics Conference and Exhibit, 2012. DOI: https://doi.org/10.2514/6.2012-2703

[16] Kimmel R.L., Adamczak D.W., Paull A., et al. HIFiRE-1 ascent-phase boundary-layer transition. J. Spacecr. Rockets, 2015, vol. 52, no. 1, pp. 217--230. DOI: https://doi.org/10.2514/1.A32851

[17] Kimmel R.L., Adamczak D.W., Borg M.P. First and fifth hypersonic international flight research experimentation’s flight and ground tests. J. Spacecr. Rockets, 2019, vol. 56, no. 2, pp. 421--431. DOI: https://doi.org/10.2514/1.A34287

[18] Kimmel R.L., Adamczak D.W., Borg M.P., et al. HIFiRE-1 and -5 flight and ground tests. AIAA Aerospace Sciences Meeting, 2018. DOI: https://doi.org/10.2514/6.2018-0056

[19] Surzhikov S.T. Calculation analysis of the experimental data of HIFiRE-1 using the computer code NERAT-2D. J. Phys.: Conf. Ser., 2018, vol. 1009, art. 012001. DOI: https://doi.org/10.1088/1742-6596/1009/1/012001

[20] Surzhikov S.T. Kompʼyuternaya aerofizika spuskaemykh kosmicheskikh apparatov. Dvukhmernye modeli [Computer aerophysics of descent spacecraft. 2D models]. Moscow, Fizmatlit Publ., 2018.

[21] Belotserkovskiy O.M., Davydov Yu.M. Metod krupnykh chastits v gazovoy dinamike [Large particles method in gas dynamics]. Moscow, Nauka Publ., 1982.