|

Evaluating the Potential of Lithium Hydride in Active Thermal Protection Systems for High-Velocity Aircraft

Authors: Tovstonog V.A. Published: 22.04.2019
Published in issue: #2(125)/2019  

DOI: 10.18698/0236-3941-2019-2-47-59

 
Category: Aviation and Rocket-Space Engineering | Chapter: Aerodynamics and Heat Transfer Processes in Aircrafts  
Keywords: high-velocity aircraft, active thermal protection, phase-change materials, lithium hydride, linear pyrolysis

Performance of high-velocity aircraft is largely governed by the efficiency of the thermal protection systems used. One of the most complex cases is thermal protection for structural elements in a high-velocity air flow. The elements must ensure high geometrical stability of the surface inside the flow when the profile blunting radii are small. For this case, we analysed the potential of an active lithium hydride-based thermal protection system exploiting the high thermal effects of its phase transitions. We show that the system under consideration may feature characteristics acceptable in practice regarding thermal protection of blunted aerofoils made out of modern heat-resistant materials

References

[1] Surzhikov S.T. Kompyuternaya aerofizika spuskaemykh kosmicheskikh apparatov [Computer aerophysics of descent spacecraft modules]. Moscow, Fizmatlit Publ., 2018.

[2] Zheleznyakova A.L., Surzhikov S.T. Numerical simulation of hypersonic flow past model of X-43 flying vehicle. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2010, no. 1, pp. 3–19 (in Russ.).

[3] Shumilin A.A. Aviatsionno-kosmicheskie sistemy SShA [USA aerospace systems]. Moscow, Veche Publ., 2005.

[4] Skibin V.A., Solonin V.I., eds. Inostrannye aviatsionnye dvigateli [Innovative aviation engines]. Moscow, Aviamir Publ., CIAM Publ., 2005.

[5] Gofin M.Ya. Zharostoykie i teplozashchitnye konstruktsii mnogorazovykh aero-kosmicheskikh apparatov [Heat-resistent and heat-protective constructions of reusable spacecraft]. Moscow, Mir Publ., 2003.

[6] Lukashevich V.P., Afanasyev I.B. Kosmicheskie krylya [Space wings]. Moscow, LenTa Stranstviy Publ., 2009.

[7] Kurziner R.I. Reaktivnye dvigateli dlya bolshikh sverkhzvukovykh skorostey poleta [Reactive jets for high supersonic flight speed]. Moscow, Mashinostroenie Publ., 1989.

[8] Krasnov N.F., Koshevoy V.N., Danilov A.N., et al. Aerodinamika raket [Rocket aerodynamics]. Moscow, Vysshaya shkola Publ., 1968.

[9] Arzhanikov N.S., Sadekova G.S. Aerodinamika bolshikh skorostey [High speed aerodynamics]. Moscow, Vysshaya shkola Publ., 1965.

[10] Mezhdunarodnaya standartnaya atmosfera [International standard atmosphere]. Akademik: website (in Russ.). Available at: http://dic.academic.ru/dic.nsf/enc_tech/2697 (accessed: 25.11.2018).

[11] Brown M., Dollimore D., Galwey A.K. Reactions in the solid state. Elsevier Science, 1980.

[12] Shestak Ya. Teoriya termicheskogo analiza: fiziko-khimicheskie svoystva tverdykh neorganicheskikh veshchestv [Thermal analysis theory: physical-chemical properties of solid non-organic matters]. Moscow, Mir Publ., 1987.

[13] Merzhanov A.G., Dubovitskiy F.I. On the theory of stationary burning of gunpowder. Doklady AN SSSR, 1959, vol. 129, no. 1, pp. 153–157 (in Russ.).

[14] Tovstonog V.A. Heat transfer in a flattened pipe with an ablative wall. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2018, no. 6, pp. 4–19 (in Russ.). DOI: 10.18698/0236-3941-2018-6-4-19

[15] Shpilrayn E.E., Yakimovich K.A. Gidrid litiya. Fiziko-khimicheskie i teplofizicheskie svoystva [Lithium hydrid. Physical-chemical and thermal-physical properties]. Moscow, Izd-vo standartov Publ., 1972.

[16] Yakimovich K.A., Mozgovoy A.G. Izotopnye modifikatsii gidrida litiya i ikh rastvory s litiem. Teplofizicheskie i fiziko-khimicheskie svoystva [Isotopic modifications of lithium hydrid and their solutions with lithium. Thermal-physical and physical-chemical properties]. Moscow, Fizmatlit Publ., 2006.

[17] Trusov B.G. [TERRA code system for simulation of phase and chemical equilibrium]. Trudy XIV Mezhdunar konf. po khim. termodinamike [Proc. XIV conf. on chemical thermodynamics]. St. Petersburg, 2002 (in Russ.).

[18] Kondratyev V.N., ed. Energii razryva khimicheskikh svyazey. Potentsialy ionizatsii i srodstvo k elektronu [Dissociation energy of chemical bonds. Ionisation potential and electron affinity]. Moscow, Izd-vo AN SSSR Publ., 1962.