Heat Transfer in a Flattened Pipe with an Ablative Wall
Authors: Tovstonog V.A. | Published: 07.12.2018 |
Published in issue: #6(123)/2018 | |
Category: Aviation and Rocket-Space Engineering | Chapter: Aerodynamics and Heat Transfer Processes in Aircrafts | |
Keywords: thermal protection, ablative material, lithium hydride, thermochemical decomposition, flattened pipe, heat transfer by radiation and convection |
The investigation concerns efficient thermal protection methods for structural elements of promising aircraft engines, such as combustion chambers, flow ducts, combustion chamber and afterburner shells of ramjet engines. We implemented forced convection cooling of the structural elements subjected to the highest thermal stresses, which makes use of the cooling capacity of the engine fuel components. However, in some cases this is not enough; as a result, we must consider alternative thermal protection, for example, ablative coatings
References
[1] Kurziner R.I. Reaktivnye dvigateli dlya bolshikh sverkhzvukovykh skorostey poleta [Jet engines for high supersonic speeds]. Moscow, Mashinostroenie Publ., 1989. 264 p.
[2] Sosunov V.A., Chepkin V.M., eds. Teoriya, raschet i proektirovanie aviatsionnykh dvigateley i energeticheskikh ustanovok [Theory, calculation and engineering of aircraft engines and propulsions]. Moscow, MAI Publ., 2003. 688 p.
[3] Artemov O.A. Pryamotochnye vozdushno-reaktivnye dvigateli (raschet kharakteristik) [Ram jets (performance calculation)]. Moscow, Sputnik + Publ., 2006. 374 p.
[4] Orlov B.V., Mazing G.Yu., Reydel A.L., Stepanov M.N., Topcheev Yu.I. Osnovy proektirovaniya raketno-pryamotochnykh dvigateley dlya bespilotnykh letatelnykh apparatov [Design philosophy of ram rocket engines for unmanned aircraft]. Moscow, Mashinostroenie Publ., 1967. 424 p.
[5] Sorokin V.A., Yanovskiy L.S., Kozlov V.A., et al. Raketno-pryamotochnye dvigateli na tverdykh i pastoobraznykh toplivakh [Ram rocket engines on solid and paste fuels]. Moscow, Fizmatlit Publ., 2010. 320 p.
[6] Yanovskiy L.S., ed. Integralnye pryamotochnye vozdushno-reaktivnye dvigateli na tverdykh toplivakh [Integrated solid propellant ramjets]. Moscow, Akademkniga Publ., 2006. 343 p.
[7] Toktaliev P.D., Martynenko S.I. Mathematical model of the cooling system of combustion chambers of aviation ramjet engines using endothermic fuels. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.],2015, no. 1, pp. 84–98 (in Russ.). DOI: 10.18698/1812-3368-2015-1-84-98
[8] Leontev A.I., Pilyugin N.N., Polezhaev Yu.V., Polyaev V.M., eds. Nauchnye osnovy tekhnologiy XXI veka [Scientific fundamentals of XXI century technology]. Moscow, Energomash Publ., 2000. 136 p.
[9] Skibin V.A., Solonin V.I., eds. Inostrannye aviatsionnye dvigateli. Vyp. 14 [Foreign aircraft engines. Vol. 14]. Moscow, TsIAM im. P.I. Baranova Publ., 2005. 590 p.
[10] Bushe M., Falampen F. Kamera sgoraniya dlya pryamotochnogo vozdushno-reaktivnogo dvigatelya i pryamotochnyy vozdushno-reaktivnyy dvigatel, soderzhashchiy takuyu kameru sgoraniya [Burner can for ram rocket engine and ram rocket engine with such camera]. Patent RF 2258150. Appl. 27.02.2003, publ. 10.08.2005.
[11] Kopelev S.Z., Gurov S.V. Teplovoe sostoyanie elementov konstruktsii aviatsionnykh dvigateley [Thermal state of aircraft engine construction elements]. Moscow, Mashinostroenie Publ., 1978. 208 p.
[12] Pratt & Whitney J58-P. Ugolok neba: website. Available at: http://www.airwar.ru/enc/engines/j58.html (accessed: 15.05.2018).
[13] Pchelkin Yu.M. Kamery sgoraniya gazoturbinnykh dvigateley [Burner can of gas-turbine engines]. Moscow, Mashinostroenie Publ., 1984. 280 p.
[14] Tovstonog V.A. Estimating thermal decomposition parameters for lithium hydride in a high temperature gas flow. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mech. Eng.], 2018, no. 3, pp. 14–29 (in Russ.). DOI: 10.18698/0236-3941-2018-3-14-29
[15] Sokolov A.V. Opticheskie svoystva metallov [Optical properties of metals]. Moscow, Fizmatgiz Publ., 1961. 464 p.
[16] Shpilrayn E.E., Yakimovich K.A. Gidrid litiya. Fiziko-khimicheskie i teplofizicheskie svoystva [Lithium hydrid. Physical-chemical and thermophysical properties]. Moscow, Izd-vo standartov Publ., 1972. 108 p.
[17] Yakimovich K.A., Mozgovoy A.G. Izotopnye modifikatsii gidrida litiya i ikh rastvory s litiem. Teplofizicheskie i fiziko-khimicheskie svoystva [Isotopic modifications of lithium hydrid and their solutions with lithium. Thermophysical and physical-chemical properties]. Moscow, Fizmatlit Publ., 2006. 280 p.
[18] Kulikov I.S. Termicheskaya dissotsiatsiya soedineniy [Thermal dissotiation of compaunds]. Moscow, Metallurgiya Publ., 1969. 574 p.
[19] Elektronnyy spravochnik po svoystvam veshchestv, ispolzuemykh v teploenergetike [Online handbook on properties of materials used in thermal energetics]. OIVT RAN: website. Available at: http://twt.mpei.ac.ru/TTHB/2/OIVT/OIVT.html (accessed: 15.05.2018).
[20] Fakhrutdinov I.Kh., Kotelnikov A.V. Konstruirovanie i proektirovanie raketnykh dvigateley tverdogo topliva [Construction and engineering of solid rocket engines]. Moscow, Mashinostroenie Publ., 1987. 328 p.
[21] Sorokin V.A., ed. Proektirovanie i otrabotka raketno-pryamotochnykh dvigateley na tverdom toplive [Engineering and development of ram rocket engines on solid fuel]. Moscow, Bauman MSTU Publ., 2016. 316 p.
[22] Demenok S.A. Teploobmen i gidravlicheskoe soprotivlenie v trubakh i kanalakh [Heat exchange and hydraulic resistance in pipes and channels]. Sankt-Petersburg, N-Prom Byuro Publ., 2012. 286 p.
[23] Polezhaev Yu.V., Yurevich F.B. Teplovaya zashchita [Thermal protection]. Moscow, Energiya Publ., 1976. 392 p.
[24] Tovstonog V.A. An experimental study of the thermal decomposition of silicon nitride. High Temperature, 1993, vol. 31, no. 3, pp. 401–406.