Mathematical Simulation for Computing Process Parameters During Non-Steady-State Heating of Heat Exchanger Walls
Authors: Aleksandrov V.Yu., Koroleva A.P., Kukshinov N.V., Safonova D.B., Frantsuzov M.S. | Published: 02.10.2018 |
Published in issue: #5(122)/2018 | |
Category: Aviation and Rocket-Space Engineering | Chapter: Aerodynamics and Heat Transfer Processes in Aircrafts | |
Keywords: non-steady-state heat transfer, heat exchanger, mathematical simulation |
The paper presents a mathematical simulation of non-steady-state heat transfer in the flow duct of a heat exchanger designed for decreasing exhaust gas temperature of an aircraft engine test firing facility. We obtained an analytical solution by quadrature for a system of partial differential equations that describe a model of a combined non-steady-state problem of heating the heat exchanger components and cooling the exhaust gases
References
[1] Grishin A.M., Fomin V.M. Sopryazhennye i nestatsionarnye zadachi mekhaniki reagi-ruyushchikh sred [Adjoint and non-stationary problems of reactive mediums mechanics]. Novosibirsk, Nauka Publ., 1984. 320 p.
[2] Lykov A.V. Teplomassoobmen [Heat and mass exchange]. Moscow, Energiya Publ., 1978. 480 p.
[3] Grishin A.M. Mathematical modeling of adjoint problems of reactive mediums mechanics. Chislennye metody zadach perenosa (materialy mezhdunarodnoy shkoly-seminara). Ch. 2. [Numerical methods of transfer problem (Proc. Int. School-Workshop). P. 2]. Minsk, Izd-vo ITMO AN BSSR Publ., 1979, pp. 65–85.
[4] Zinchenko V.I., Pyrkh S.I. A nonequilibrium viscous shock-wave layer in the vicinity of the critical point with the associated heat exchange taken into account. Journal of Applied Mechanics and Technical Physics (PMTF), 1979, vol. 20, no. 3, pp. 344–349. DOI: 10.1007/BF00911692 Available at: https://link.springer.com/article/10.1007/BF00911692
[5] Polezhaev Yu.V., Yurevich B.F. Teplovaya zashchita [Thermal protection]. Moscow, Energiya Publ., 1976. 392 p.
[6] Grishin A.M., Gofman A.G., Zinchenko V.I., Pyrkh S.I. Solving some adjoint problems of heat and mass exchange of TOD with hypersonic flows. Chislennye metody mekhaniki sploshnykh sred, 1982, no. 2 (in Russ.).
[7] Prokhorenkov A.M. Modeling of heat exchange processes in lamellar heat exchange devices. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mech. Eng.], 2014, no. 1, pp. 92–101 (in Russ.).
[8] Malov Yu.I., Nuzhnenko T.A. Mathematical modeling of non-stationary heat conduction in cylindrical heat-releasing element. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Estestv. Nauki [Herald of the Bauman Moscow State Tech. Univ., Nat. Sci.], 2003, no. 2, pp. 20–27 (in Russ.).
[9] Ershova V.V. Impulsnye funktsii. Funktsii kompleksnoy peremennoy. Operatsionnoe ischislenie [Pulse functions. Functions of complex variable. Operational calculus]. Minsk, Vysheyshaya shkola Publ., 1976. 255 p. (in Russ.).
[10] Bateman H., Erdelyi A. Tablitsy integralnykh preobrazovaniy. T. 1. Moscow, Nauka Publ., 1969. 343 p.