|

Computational and Experimental Technique for Selecting Chamber Parameters for Thermal Condition Testing of Onboard Equipment in Unpressurised Spacecraft

Authors: Alekseev V.A., Kudryavtseva N.S., Titova A.S. Published: 09.04.2018
Published in issue: #2(119)/2018  

DOI: 10.18698/0236-3941-2018-2-72-88

 
Category: Aviation and Rocket-Space Engineering | Chapter: Aerodynamics and Heat Transfer Processes in Aircrafts  
Keywords: spacecraft, temperature control systems, thermal vacuum chamber, climate chamber, onboard equipment, unpressurised compartment, Electronic and Electromechanical (EEE) parts

We present a combined computational and experimental technique for selecting chamber parameters for testing thermal conditions of onboard equipment mounted in unpressurised spacecraft compartments. The task was to determine criteria ensuring that the temperature field of the equipment inside the craft stays identical to the temperature field of the same equipment inside the climate chamber, equipment thermal emissions being equal. This makes it possible to partially replace expensive and labour-intensive thermal condition testing of onboard equipment in thermal vacuum chambers with climate chamber testing. We supply comparative thermal test results of a standard onboard equipment unit in a thermal vacuum chamber and a climate chamber at temperatures derived by means of the computational and experimental technique presented

References

[1] Mikheev M.A., Mikheeva I.M. Osnovy teploperedachi [Heat transfer fundamentals]. Moscow, Energiya Publ., 1977. 343 p.

[2] Isachenko V.P., Osipova V.A., Sukomel A.S. Teploperedacha [Heat transfer]. Moscow, Energoizdat Publ., 1981. 415 p.

[3] Yakob M. Voprosy teploperedachi [Heat transfer aspects]. Moscow, Izd-vo inostrannoy literatury Publ., 1960. 517 p.

[4] Schneider P.J. Conduction heat transfer. Addison-Wesley, 1955. 395 p.

[5] Robert D. Karam. Satellite thermal control for systems engineers. AIAA, 1998. 274 p.

[6] Dulnev G.N. Teplo- i massoobmen v radioelektronnoy apparature [Heat and mass transfer in radioelectronic equipment]. Moscow, Vysshaya shkola Publ., 1984. 247 p.

[7] Dulnev G.N., Parfenov V.G., Sigalov A.V. Metody rascheta teplovogo rezhima priborov [Calculation method for thermal conditions of equipment]. Moscow, Radio i svyaz Publ., 1990. 312 p.

[8] Koshkin V.K., red. Osnovy teploperedachi v aviatsionnoy i raketno-kosmicheskoy tekhnike [Heat transfer fundamentals in aerotechnics and rocket-and-space equipment]. Moscow, Mashinostroenie Publ., 1992. 528 p.

[9] Favorskiy O.N., Kadaner Ya.S. Voprosy teploobmena v kosmose [Heat transfer aspects in space]. Moscow, Vysshaya shkola Publ., 1972. 280 p.

[10] Zaletaev V.M., Kapinos Yu.V., Surguchev O.N. Raschet teploobmena kosmicheskogo apparata [Heat transfer calculation for aircraft]. Moscow, Mashinostroenie Publ., 1979. 208 p.

[11] Shangina E.A., Rybakov A.S., Pasechnik K.A., Zaytsev P.A., Vlasov A.Yu. Untightened platform of space vehicle for remote sounding of the Earth. Sibirskiy zhurnal nauki i tekhnologiy [Scientific Journal of Science and Technology], 2010, no. 6, pp. 95–97 (in Russ.).

[12] Andreozzi A., Lauriat G., Wang Q., Karellas S., Jaluria Y. Novel analytical and numerical methods in heat transfer enhancement and thermal management. Journal of Applied Mathematics, 2016, vol. 2016. DOI: 10.1155/2016/8450794 Available at: https://www.hindawi.com/journals/jam/2016/8450794

[13] Ibrahim N.I., Al-Sulaiman F.A., Bekir S.R., Yilbas B.S., Sahin A.Z. Heat transfer enhancement of phase change materials for thermal energy storage applications: a critical review. Renewable and Sustainable Energy Reviews, 2017, vol. 74, pp. 26–50.

[14] Shih T.M. Numerical heat transfer. CRC Press, 1984. 563 p.

[15] Dreytser G.A. Teploobmen pri svobodnoy konvektsii [Heat transfer in natural convection]. Moscow, MAI Publ., 2002. 97 p.

[16] Dreytser G.A. Osnovy konvektivnogo teploobmena v kanalakh [Fundamentals of convection heat transfer in channels]. Moscow, MAI Publ., 1989. 84 p.

[17] Gebhart B., Jaluria Y., Mahajan R.L., Sammakia B. Buoyancy-induced flows and transport. CRC Press, 1988. 1001 p.

[18] Popov I.A. Gidrodinamika i teploobmen vneshnikh i vnutrennikh svobodno-konvektivnykh vertikalnykh techeniy s intensifikatsiey. Intensifikatsiya teploobmena [Hydrodynamics and heat transfer of inner and outer vertical convection currents with intensification. Heat transfer intensification]. Kazan, Tsentr innovatsionnykh tekhnologiy Publ., 2007. 326 p.

[19] Eliseev V.N., Tovstonog V.A., Borovkova T.V. On the efficiency of cooling surfaces with fins containing internal heat sources. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2014, no. 2 (95), pp. 28–43 (in Russ.).

[20] Reznik S.V., Prosuntsov P.V., Fisher W.P.P., et al. Modeling and identification of the processes of heat exchange in porous materials of thermal protection of reusable aerospace systems. Journal of Engineering Physics and Thermophysics, 2004, vol. 77, no. 3, pp. 471–477. DOI: 10.1023/B:JOEP.0000036492.18328.f2 Available at: https://link.springer.com/article/10.1023/B%3AJOEP.0000036492.18328.f2

[21] Alifanov O.M., Vabishchevich P.N., Mikhaylov V.V., et al. Osnovy identifikatsii i proektirovaniya teplovykh protsessov i system [Fundamentals of intensification and heat transfer processes and systems engineering]. Moscow, Logos Publ., 2001. 400 p.

[22] Merzlikin V., Timonin V., Tovstonog V. Multilayered semitransparent and opaque heat-insulating coatings for diesel combustion chamber. SAE Technical Papers, 2009, no. 24. DOI: 10.4271/2009-24-0116 Available at: https://www.sae.org/publications/technical-papers/content/2009-24-0116

[23] Alekseev V.A., Shishanov A.V., Chukin V.F., Skobelev. S.S., et. al. Heat storages based on shape-stable phase-transitional material. Applied Thermal Engineering, 2008, vol. 28, no. 4, pp. 261–265. DOI: 10.1016/j.applthermaleng.2006.02.024 Available at: https://www.sciencedirect.com/science/article/pii/S1359431106000664

[24] Prosuntsov P.V. Parametric identification of thermophysical properties of highly porous partially transparent materials based on the solution of a two-dimensional problem of radiative-conductive heat transfer. Heat Transfer Research, 2005, vol. 36, no. 6, pp. 481–500. DOI: 10.1615/HeatTransRes.v36.i6.60

[25] Reznik S.V., Prosuntsov P.V., Denisov O.V., et al. Numerical and experimental estimation of heat conductivity of carbon plastic in a reinforcement plane on the basis of contactless measurement of temperature. Teplovye protsessy v tekhnike [Thermal Processes in Engineering], 2016, no. 12, pp. 557–563 (in Russ.).

[26] Kalinin D.Yu., Reznik S.V., Denisova L.V. Theoretical and experimental studies of heat-transfer modes of space antenna mesh reflectors. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2011, no. 1, pp. 92–105 (in Russ.).

[27] Prosuntsov P.V., Danilova D.A. Mathematical simulation of combined heat transfer process and parameters optimization of thermal protection system with radiation screen system. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2012, spec. iss. "Progressive materials, constructions and technologies of rocket-space mechanical engineering", pp. 59–66 (in Russ.).

[28] Alekseev V.A., Kudryavtseva N.S., Titova A.S., et al. Mathematical modeling of heat processes of miniature onboard equipment. Vestnik MAI, 2010, vol. 17, no. 1, pp. 55–61 (in Russ.).

[29] GOST RV 20.39.304–98. Apparatura, pribory, ustroystva i oborudovanie voennogo naznacheniya. Trebovaniya stoykosti k vneshnim vozdeystvuyushchim faktoram [State standard RV 20.39.30–98. Apparatus, tools and equipment designed for military applications. Demands to environmental durability]. Moscow, Standartinform Publ., 2015. 54 p.

[30] GOST RV 20.57.306–98. Apparatura, pribory, ustroystva i oborudovanie voennogo naznacheniya. Metody ispytaniy na vozdeystvie klimaticheskikh faktorov [State standard RV 20.57.306–98. Apparatus, tools and equipment designed for military applications. Testing methods for climatic factors impact]. Moscow, Standartinform Publ., 2015. 26 p.

[31] Aksamentov V.A., Bednov S.M., Zaletaev S.V., et al. Rukovodstvo dlya konstruktorov po obespecheniyu teplovykh rezhimov. T. 2. Raschet temperaturnykh poley konstruktsiy letatelnogo apparata i ego elementov [Guide line for engineers on maintaining thermal conditions. Vol. 2. Thermal fields calculation of aircraft and its elements]. Kaliningrad, GONTI Publ., 1989. 184 p.

[32] Alekseev V.A., Duyunov V.V., Kudryavtseva N.S., Titova A.S. Experimental study of natural convection flow and heat transfer in closed channels of miniature onboard equipment for unpressurized earth satellite. Teplovye protsessy v tekhnike, 2016, vol. 8, no. 5, pp. 201–206 (in Russ.).

[33] Alifanov O.M., Artyukhin E.A., Nenarokomov A.V. Obratnye zadachi v issledovanii slozhnogo teploobmena [Inverse problems in the study of complex heat exchange]. Moscow, Yanus-K Publ., 2009. 300 p.