On the Possibility of Increasing Rocky Target Penetration Depth for Compound Penetrators Featuring a Tail Assembly Jettisoned at Impact

Authors: Fedorov S.V., Veldanov V.A., Fedorova N.A. Published: 17.02.2019
Published in issue: #1(124)/2019  

DOI: 10.18698/0236-3941-2019-1-30-50

Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Dynamics, Ballistics, Motion Control  
Keywords: high-speed penetration, rocky ground target, penetrator, penetrating unit, ballast mass jettisoning, recoil impulse

The paper considers the possibility of increasing rocky target penetration depth for compound penetrators equipped with a tail assembly that is jettisoned at impact. The jettisoned ballast mass of the tail assembly featured a tubular part assuming the role of a launch tube housing a penetrating unit. When the ballast mass is jettisoned in the direction opposite to the penetration direction, this additional impulse pushes the penetrating unit in the direction of its motion, which may result in increasing the penetratio depth of the unit. We conducted our research using a computational model that presents the penetrating unit and the ballast mass as axisymmetric nondeformable bodies moving due to the forces generated by the resistance of the target and by the propellant gas pressure, said forces acting upon the bodies under consideration at the moment of jettisoning. We also assumed that the propellant gas pressure is constant for the jettisoning duration. Our computations detected that, for targets similar to dense ground and rock, the following factors affect the increase in penetration depth: mass ratio of the jettisoned and penetrating parts of the penetrator; the moment when the ballast mass is jettisoned; the jettisoning pressure; the length of the tubular part, which determines how long the propellant gases will be able to push the penetrating unit

The study was partially supported by RFBR (grant no. 15-08-08319-a)


[1] Rodchenko V.V., Sadretdinova E.R., Gusev E.V. Choice of parameters of penetrator for research of a lunar ground. Vestnik MAI [Aerospace MAI Journal], 2010, vol. 17, no. 3, pp. 83–90 (in Russ.).

[2] Selivanov V.V., ed. Sredstva porazheniya i boepripasy [Weapons and ammunition]. Moscow, Bauman MSTU Publ., 2008.

[3] Kaminskiy M.V., Kopytov G.F., Kiselev Yu.G., et al. [Critical velocity at introduction of projectiles with a conic nose form into soil targets]. Sb. mat. III nauch. konf. Volzhskogo region. tsentra RARAN "Sovremennye metody proektirovaniya i otrabotki raketno-artilleriyskogo vooruzheniya". T. 2 [Proc. III sci. conf. of the RAMAS Volga regional center ꞌꞌAdvanced methods of design and development of missile and artillery weaponsꞌꞌ. Vol. 2]. Sarov, RFYaTs–VNIIEF Publ., 2004, pp. 642–647 (in Russ.).

[4] Foppestal M.J., Lee L.M., Jenrette B.D. Laboratory-scale penetration experiments into geological targets to impact velocities of 2,1 km/s. J. Appl. Mech., 1986, vol. 53, no. 2, pp. 317–320. DOI: 10.1115/1.3171758

[5] Fedorov S.V., Fedorova N.A. Influence of the soil and rocky target strength properties on projectiles penetration depth with additional action of the jet thrust impulse. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2016, no. 4, pp. 40–56 (in Russ.).DOI: 10.18698/0236-3941-2016-4-40-56

[6] Tate A. A theory for the deceleration of long rods after impact. J. Mech. Phys. Solids, 1967, vol. 15, no. 6, pp. 387–399. DOI: 10.1016/0022-5096(67)90010-5

[7] Rosenberg Z., Dekel E. On the role of material properties in the terminal ballistics of long rods. Int. J. Impact Eng., 2004, vol. 30, no. 7, pp. 835–851. DOI: 10.1016/j.ijimpeng.2004.03.007

[8] Fedorov S.V., Veldanov V.A., Smirnov V.E. Numerical analysis of high density alloys and elongated projectiles velocity and strength effect on their penetration into a steel target. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2015, no. 1, pp. 65–83 (in Russ.). DOI: 10.18698/0236-3941-2015-1-65-83

[9] Weihrauch G., Wollmann E. Segmented penetrators. PEP, 1993, vol. 18, no. 5, pp. 270–274. DOI: 10.1002/prep.19930180507

[10] Fedorov S.V., Veldanov V.A. Application of segmented strikers for cavern formation in soil and rocky obstacles. Izvestiya RARAN, 2012, no. 1, pp. 43--50 (in Russ.).

[11] Fedorov S.V., Veldanov V.A. Determination of the dimension of a cavity in water behind a fast-moving cylindrical body. Tech. Phys., 2013, vol. 58, no. 2, pp. 165--169. DOI: 10.1134/S1063784213020072

[12] Babkin A.V., Ladov S.V., Marinin V.M., et al. Effect of shaped-charge jet compressibility and strength on the characteristics of their inertial stretching in free flight. J. Appl. Mech. Tech. Phys., 1997, vol. 38, no. 2, pp. 177–184. DOI: 10.1007/BF02467898

[13] Ben-Dor G., Dubinsky A., Elperin T. Optimization of penetration into geological and concrete shields by impactor with jet thruster. J. Mech. Mater. Struct., 2008, vol. 3, no. 4, pp. 707–727.

[14] Fedorov S.V., Fedorova N.A., Veldanov V.A. Jet thrust impulse using for increase in depth of research modules penetration into low-strength soil targets. Izvestiya RARAN, 2014, no. 4, pp. 53–63 (in Russ.).

[15] Ben-Dor G., Dubinsky A., Elperin T. Engineering models of high speed penetration into geological shields. Centr. Eur. J. Eng., 2014, vol. 4, no. 1, pp. 1–19. DOI: 10.2478/s13531-013-0135-4

[16] Sagomonyan A.Ya. Pronikanie [Penetration]. Moscow, MSU Publ., 1974.

[17] Ben-Dor G., Dubinsky A., Elperin T. Localized interaction models with non-constant friction for rigid penetrating impactors. Int. J. Solids Struct., 2007, vol. 44, no. 7-8, pp. 2593–2607. DOI: 10.1016/j.ijsolstr.2006.08.009

[18] Orlenko L.P., ed. Fizika vzryva. T. 2 [Explosion physics. Vol. 2]. Moscow, Fizmatlit Publ., 2004.

[19] Korolev A.A., Komochkov V.A., ed. Ballistika raketnogo i stvolnogo oruzhiya [Ballistics of missile and barrel weapon]. Volgograd, Izd-vo uch.-nauch. Lit. Publ., 2010.

[20] Veldanov V.A., Markov V.A., Pusev V.I., et al. Study of dynamical mechanical properties of aluminum alloys by method of accelerometry. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2010, no. 2, pp. 37--46 (in Russ.).