|

To the calculation of the main vector and the main momentum of light pressure force on a solar sail

Authors: Zimin V.N. , Nerovnyi N.A. Published: 14.02.2016
Published in issue: #1(106)/2016  

DOI: 10.18698/0236-3941-2016-1-17-28

 
Category: Aviation and Rocket-Space Engineering | Chapter: Aircraft Dynamics, Ballistics, Motion Control  
Keywords: solar sail, light pressure, reflectivity coefficient, optical characteristics, resultant vector, principal moment

The article examines the problem of analytical determination of light pressure resultant vector and principal moment for the solar sail of convex shape. The resultant vector and principal moment and its light pressure equations make it possible to separate the description of solar sail shape surface with its optical characteristics from its spatial orientation relative to incident sun rays. We also obtained correction data which helped to consider the linear dependence of sail material reflectivity on its volumetric strain. The resulted tensor equations can be used to determine the load on any bodies under light pressure.

References

[1] McInnes C.R. Solar Sailing: Technology, Dynamics and Mission Applications. Springer Science & Business Media, 2004. 332 p.

[2] Egorov V.A., ed. by Polyakhova E.N. Kosmicheskiy polet s solnechnym parusom: problemy i perspektivy [Space Flight with a Solar Sail: Problems and Prospects]. Moscow, Knizhnyy dom Librokom Publ., 2011. 320 p.

[3] Forward R. Grey solar sails. American Institute of Aeronautics and Astronautics, 1989.

[4] Raykunov G.G., Komkov V.A., Mel’nikov V.M., Kharlov B.N. Tsentrobezhnye beskarkasnye krupnogabaritnye kosmicheskie konstruktsii [Centrifugal Frameless Large-Sized Space Structures]. Moscow, Fizmatlit Publ., 2009. 448 p.

[5] Zimin V.N., Nerovnyy N.A. Analysis of the deformed shape of a heliogyro solar sail blade taking into account stress-dependent reflectivity of the material. Izv. Vyssh. Uchebn. Zaved., Mashinostr. [Proc. of Higher Educational Institutions. Маchine Building], 2015, no. 1 (658), pp. 11-16 (in Russ.). DOI: 10.18698/0536-1044-2015-1-11-17

[6] Spencer H., Carroll K.A. Real Solar Sails are Not Ideal, and Yes It Matters. Advances in Solar Sailing, Berlin Heidelberg, Springer, 2014, pp. 921-940.

[7] Rios-Reyes L. Solar Sails: Modeling, Estimation, and Trajectory Control. University of Michigan, 2006. 148 p.

[8] Kislov N. Variable Reflectance/Transmittance Coatings for Solar Sail Altitude Control and Three Axis Stabilization. AIP, 2004, vol. 699, pp. 103-111.

[9] Trofimov S.P. Uvod malykh kosmicheskikh apparatov s nizkikh okolozemnykh orbit [Deorbit of Small Spacecrafts from Low-Earth Orbit]. Moscow, Institut prikladnoy matematiki im. M.V. Keldysha RAN, 2015. 125 p.

[10] Trofimov S.P. Dinamicheski invariantnoe masshtabirovanie massogabaritnykh parametrov karkasnykh parusnykh sistem [Dynamically Invariant Scaling of the Mass and Size Parameters of Framed Sail Systems]. Moscow, Preprint no. 31, IPM im. M.V. Keldysha Publ., 2015. 16 p.

[11] Sazonov Vas.V., Sazonov V.V. Calculation of resultant vector and principal moment of light pressure forces acting upon the spacecraft with a solar sail. Cosmic Research, 2011, vol. 49, no. 1, pp. 56-64.

[12] Jing H., Shengping G., Junfeng L. A curved surface solar radiation pressure force model for solar sail deformation. Science China Physics, Mechanics and Astronomy, 2012, vol. 5, no. 1, pp. 141-155.

[13] Jing H.E., Shegping G., Junfeng L., Yufei L. The Solar Radiation Pressure Force Models for a General Sail Surface Shape. ed. Macdonald M. Advances in Solar Sailing. Springer Berlin Heidelberg, 2014, pp. 469-488.

[14] Nerovnyy N.A., Determination of the Radiation Pressure Force Acting on a Solar Sail Taking into Account Stress-Dependent Optical Parameters of Sail Material. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mech. Eng.], 2014, no. 3 (96), pp. 61-78 (in Russ.).

[15] Dimitrienko Yu.I. Mekhanika sploshnoy sredy. T. 1. Tenzornyy analiz [Continuum Mechanics. Vol. 1. Calculus of Tensors]. Moscow, MGTU im. N.E. Baumana Publ., 2011. 463 p.

[16] Borovin G.K., Zakhvatkin M.V., Stepan’yants V.A., Tuchin A.G. Determination and prediction of orbital parameters of the "Radioastron" mission. Mathematica Montisnigri, 2014, vol. XXX, pp. 76-98.

[17] Shmatov S.I., Mordvinkin A.S. The Combined Compensating System of the Disturbing Torque Induced by Solar Pressure for Geostationary Satellite. Vestnik NPO im. S.A. Lavochkina, 2013, no. 3 (19), pp. 30-36 (in Russ.).

[18] Chumachenko E.N., Malashkin A.V., Fedorenko A.N. Modelling of Use of a Solar Wind for Orbital Maneuvers of Space Vehicles. Vestn. Voronezh Gos. Tekh. Univ. [Herald of the Voronezh State Tech. Un.], 2011, no. 112, pp. 71-75 (in Russ.).

[19] Chumachenko E.N., Nazirov R.R., Dunhem D.U., Fedorenko A.N. Controlling spacecraft by means of solar radiation. Cosmic Research, 2014, vol. 52, no. 3, pp. 244-249.

[20] Rachkin D., Tenenbaum S., Dmitriev A., Nerovniy N., Kotsur O., Vorobyov A. 2-blades deploying by centrigugal force solar sail experiment (IAC-11. E2.3.8). Proc. of 62nd International Astronautical Congress, Cape Town, SA, 2011.