Adaptive Antenna Array Introduction for the Satellite Navigation System Users
Authors: Ermilov A.S., Balashov A.Yu., Gyulmagomedov N.Kh., Evseev D.A. | Published: 08.07.2024 |
Published in issue: #2(149)/2024 | |
Category: Aviation and Rocket-Space Engineering | Chapter: Aircrafts Development, Design and Manufacture | |
Keywords: antenna array design, micro-strip antenna, setup development, additive technologies, satellite navigation user equipment, 3D printing, technical solutions development |
Abstract
A prototype of the adaptive antenna array operating in the L1 frequency range of the satellite radio navigation systems was developed and manufactured. Radio technical characteristics of the antenna array basic emitter were calculated. The emitter was made in the form of a ceramic micro-strip antenna element consisting of radiating element, ceramic substrate, exciting pin and metal screen. Description of the antenna array design is provided, it consists of a base and eight emitters. The developed array design is chosen to ensure the minimum overall dimensions and mutual influence between the emitters. To confirm functionality of the selected antenna array configuration, a working prototype was manufactured consisting of the micro-strip ceramic emitters and a base. The setup base appears to be a cutout from the cylinder side surface and is made of the PLA plastic using the 3D printing technology. Presented results of measuring the standing wave voltage coefficient confirmed the antenna array setup operability in the L1 frequency range for the GLONASS and GPS satellite radio navigation systems. Analysis results of the numerical calculations and measurements confirmed correctness of the technical solutions implemented in the antenna array. Using the 3D printing technology made it possible to accelerate development of the technical solutions in implementing the antenna array setup. The proposed antenna array design could be introduces in the navigation signal receivers with the adaptive beamforming
Please cite this article in English as:
Ermilov A.S., Balashov A.Yu., Gyulmagomedov N.Kh., et al. Adaptive antenna array introduction for the satellite navigation system users. Herald of the Bauman Moscow State Technical University, Series Mechanical Engineering, 2024, no. 2 (149), pp. 82--95 (in Russ.). EDN: QVXCWJ
References
[1] Los V.F. Mikropoloskovye i dielektricheskie rezonatornye antenny [Microstrip and dieletrical echo box antennas]. Moscow, IPRZhR Publ., 2002.
[2] Panchenko B.A., Nefedov E.I. Mikropoloskovye antenny [Microstrip antennas]. Moscow, Radio i svyaz Publ., 1986.
[3] Zheksenov M.A., Pechurin V.A., Volchenkov A.S. Patch antenna array for unmanned aerial vehicle. Trudy MAI, 2011, no. 45 (in Russ.).Available at: https://trudymai.ru/published.php?ID=25385&PAGEN_2=2
[4] Ksendzuk A.V. Aperture synthesis using the GLONASS navigation system GLONASS. Uspekhi sovremennoy radioelektroniki, 2003, no. 11, pp. 44--54 (in Russ.).
[5] Yaskin Yu.S., Kharisov V.N., Efimenko V.S., et al. Jamming suppression characteristics in the first model of antijam GLONASS/GPS navigation receiver with adaptive antenna array. Radiotekhnika [Radioengineering], 2010, no. 7, pp. 127--136 (in Russ.). EDN: NBGVFD
[6] Slyusar V.I. Digital antenna arrays. Solving the GPS problems. Elektronika: NTB [Electronics: STB], 2009, no. 1, pp. 74--78 (in Russ.). EDN: OCALQL
[7] Zimin A.S., Krinitskiy G.V. Using multi-antenna systems to improve the noise immunity of satellite navigation systems for mobile vehicles. Trudy MAI, 2012, no. 51 (in Russ.). Available at: https://trudymai.ru/published.php?ID=29151
[8] Grigoryev L.N. Tsifrovoe formirovanie diagrammy napravlennosti v fazirovannykh antennykh reshetkakh [Digital generation of the radiation pattern in phased array antennas]. Moscow, Radiotekhnika Publ., 2010.
[9] Nefedov E.I., Fialkovskiy A.T. Poloskovye linii peredachi [Strip transmission lines]. Moscow, Nauka Publ., 1980.
[10] Markov G.T., Chaplin A.F. Vozbuzhdenie elektromagnitnykh voln [Excitation of electromagnetic waves]. Moscow, Energiya Publ., 1966.
[11] Bankov S.E., Davydov A.G., Papilov K.B. Circularly polarized compact patch antennas. Zhurnal radioelektroniki [Journal of Radio Electronics], 2010, no. 8 (in Russ).Available at: http://jre.cplire.ru/win/aug10/1/text.html
[12] Migalev I.E. Practical application of the finite difference time domain method to modeling the electromagnetic field. Polzunovskiy vestnik, 2012, no. 4, pp. 33--35 (in Russ.). EDN: PYQAYZ
[13] Perov A.I., Kharisov V.N. GLONASS. Printsipy postroeniya i funktsionirovaniya [GLONASS. Principles of construction and operation]. Moscow, Radiotekhnika Publ., 2010.
[14] Gnedak P.V. Fazovyy sintez nuley v diagrammakh napravlennosti aperturnykh antenn na osnove metoda aperturnykh ortogonalnykh polinomov. Avtoref. dis. kand. tekh. nauk [Zero phase synthesis in the aperture antenna radiation patterns based on the aperture orthogonal polynom method. Abs. Сand. Sc. (Eng.). Diss.]. Moscow, MEI, 2009 (in Russ.).
[15] Astapov V.Yu., Khoroshko L.L., Dudkov K.V. Evaluation of additive technologies application for creating models of space missile head. Trudy MAI, 2018, no. 101 (in Russ.). Available at: https://trudymai.ru/published.php?ID=96683
[16] Demidenko E.V., Kuzmin S.V., Kirik D.I. 3D printing of the antenna feeder systems from polymeric materials. Elektronika i mikroelektronika SVCh, 2018, vol. 1, pp. 491--495 (in Russ.). EDN: UUZBTO
[17] Balashov A.Yu., Ermilov A.S., Gyulmagomedov N.Kh. [3D printing application for designing structures with the radio transparent characteristics]. Additivnye tekhnologii: nastoyashchee i budushchee. Mater. VII Mezhdunar. konf. [Additive Technologies Today and in the Future. Proc. VII Int. Conf.], 2021, pp. 180--189 (in Russ.). EDN: COSCVL
[18] Endogur A.I., Kravtsov V.A., Soloshenko V.N. Principles of rational aviation structural design with the use of composite materials. Trudy MAI, 2014, no. 72 (in Russ.).Available at: https://trudymai.ru/published.php?ID=47572
[19] Kharalgin S.V., Voytovich M.I. Investigation of the dielectric characteristics of materials manufactured using additive technologies. Rossiyskiy tekhnologicheskiy zhurnal [Russian Technological Journal], 2021, no. 2, pp. 57--65 (in Russ.).DOI: https://doi.org/10.32362/2500-316X-2021-9-2-57-65
[20] Tarasova T.V., Skornyakov I.A. Possibilities of additive technologies in fabrication of polymer composite materials. Avtomatizatsiya i upravlenie v mashinostroenii, 2017, no. 3, pp. 7--11 (in Russ.). EDN: XMZHID