|

Developing a Movable Part for a Test Bench Featuring a Linear Motor and Magnetic Suspensionfor Simulating Inertial Loads on an Object

Authors: Lobastov I.A., Paleshkin A.V. Published: 18.10.2020
Published in issue: #5(134)/2020  

DOI: 10.18698/0236-3941-2020-5-4-18

 
Category: Aviation and Rocket-Space Engineering | Chapter: Aircrafts Development, Design and Manufacture  
Keywords: space capsules, development testing, centrifugal test bench, linear motor, magnetic suspension, aerospace engineering, high-temperature superconducting elements

We selected the main parameters for a new layout of a centrifugal installation featuring a linear motor and magnetic suspension. Since existing test benches for simulating linear accelerations have a range of disadvantages, we propose to consider an alternative to the classical layout, in particular, to reject the rotary link and replace it by a ring-like path structure with a linear motor, along which a trolley carrying the object under investigation will move on a magnetic suspension. We analysed various spatial stabilisation systems for the trolley moving at high velocities. We defined the key initial data, taking into account descent into planetary atmospheres, design specifics of products subjected to G-forces and existing centrifugal installations. We computed the parameters of a magnetic suspension based on high-temperature superconducting yttrium ceramics and electrical engineering parameters of the linear motor, and carried out strength calculations for the movable part of the test bench using the Femap with NX Nastran software package, accounting for the operational loads intended. The paper presents an option for implementing a new structural layout of an experimental installation that ensures linear acceleration testing in various operation modes

References

[1] Kholodkov N.V., ed. Eksperimental’naya otrabotka kosmicheskikh letatel’nykh apparatov [Experimental optimization of spacecraft]. Moscow, MAI Publ., 1994.

[2] Popov E.I. Spuskaemye apparaty [Descent vehicles]. Moscow, Znanie Publ., 1985.

[3] Bocharov V.I., Nagorskiy V.D. Vysokoskorostnoy nazemnyy transport s lineynym privodom i magnitnym podvesom [High-speed ground transportation with linear motor and magnetic suspension]. Moscow, Transport Publ., 1985.

[4] Toporkov A.G. Raschet dvizheniya spuskaemogo apparata v atmosfere Venery [Calculation of descent vehicle motion in Venus atmosphere]. Moscow, Bauman MSTU Publ., 2012.

[5] Zakharov Yu.V. [Modeling spacecraft dynamic loads during descent in planet atmosphere]. Mat. Mezhdunar. kosmich. konf. [Proc. Int. Space Conf.]. Moscow, MAI Publ., 2001, pp. 145--146 (in Russ.).

[6] Lobastov I.A., Alekseeva N.N., Paleshkina Yu.V., et al. Selecting design parameters of the centrifugal test bench while quasi-static-oscillating loading of the test object with free oscillations of the system. Trudy MAI, 2019, no. 104 (in Russ.). Available at: http://www.trudymai.ru/published.php?ID=102240

[7] Galeev A.G., Zakharov Yu.V., Makarov V.P., et al. Proektirovanie ispytatel’nykh stendov dlya eksperimental’noy otrabotki ob”ektov raketno-kosmicheskoy tekhniki [Designing test stands for experimental optimization of rocket and space technique]. Moscow, MAI Publ., 2014.

[8] Markachev N.A., Zakharov Yu.V., Grishin S.A. Use of centrifugal units for automated spacecraft ground testing. Vestnik FGUP "NPO im. S.A. Lavochkina", 2012, no. 2, pp. 44--51 (in Russ.).

[9] Bocharov V.I., Nagorskiy V.D., eds. Transport s magnitnym podvesom [Transport with magnetic suspension]. Moscow, Mashinostroenie Publ., 1991.

[10] Werfel F.N., Floegel-Delor U., Rothfeld R., et al. Bulk superconductors in mobile application. Phys. Procedia, 2012, vol. 26, no. 3, pp. 948--952. DOI: https://doi.org/10.1016/j.phpro.2012.06.235

[11] Werfel F.N., Floegel-Delor U., Rothfeld R. Experiments of superconducting Maglev ground transportation. IEEE Trans. Appl. Supercond., 2016, vol. 26, no. 3, art. 3602105. DOI: https://doi.org/10.1109/TASC.2016.2524471

[12] Schmidt V.V. The physics of superconductors. Springer, 1997.

[13] Kovalev L.K., Kovalev K.L., Koneev M.A., eds. Elektromekhanicheskie preobrazovateli na osnove massivnykh vysokotemperaturnykh sverkhprovodnikov [Electromechanical converters based on massive high-temperature superconductors]. Moscow, MAI-Print Publ., 2008.

[14] Yonezu T., Watanabe K., Suzuki E., et al. Study on electromagnetic force characteristics acting on levitation/guidance coils of a superconducting maglev vehicle system. IEEE Trans. Magn., 2017, vol. 53, no. 11, art. 8300605. DOI: https://doi.org/10.1109/TMAG.2017.2697002

[15] Gieras J.F., Piech Z.J., Tomczuk B. Linear synchronous motor. New York, CRC Press, 2000.

[16] Deng Z., Zhang W., Zheng J., et al. A high-temperature superconducting maglev-evacuated tube transport (HTS Maglev-ETT) test system. IEEE Trans. Appl. Supercond., 2017, vol. 27, no. 6, art. 3602008. DOI: https://doi.org/10.1109/TASC.2017.2716842

[17] Deng Z., Zhang W., Zheng J., et al. A high-temperature superconducting Maglev ring test line developed in Chengdu, China. IEEE Trans. Appl. Supercond., 2016, vol. 26, no. 6, art. 3602408. DOI: https://doi.org/10.1109/TASC.2016.2555921