Investigation of the Ballistic Descent Mode for a Maneuverable Lander to the Venus Surface

Authors: Kosenkova A.V., Minenko V.E., Agafonov D.N. Published: 11.08.2020
Published in issue: #4(133)/2020  

DOI: 10.18698/0236-3941-2020-4-42-60

Category: Aviation and Rocket-Space Engineering | Chapter: Aircrafts Development, Design and Manufacture  
Keywords: landing module, lifting body, descent trajectory, Venus, lateral manoeuvre

At present, various projects to continue fundamental investigations of Venus are considered in Russia and abroad. It means that the issue of developing a landing module to reach the surface of the planet becomes topical, as the module might provide access to the regions most attractive in terms of research. We propose to use a landing module of the lifting body type, which, as compared to a ballistic class module, is not unacceptably complicated in terms of design and at the same time features a lift-to-drag ratio adequate for solving manoeuvring problems arising in the process of descent into the Venusian atmosphere to reach the target landing area. We consider potential descent trajectories available to a landing module of this type, including the possibility of performing a maximum lateral manoeuvre; we took into consideration its long-period trajectories characterised by multiple re-entries into the dense atmosphere and compared these trajectories to the descent trajectory of a conventional ballistic class landing module. We show that using a manoeuvrable craft expands the selection of potential landing regions, as well as reduces loads and broadens the scope of scientific problems to be solved and studies to be undertaken


[1] Abdrakhimov A.M. Geochemical comparison of volcanic rocks from terrestrial intraplate oceanic hot spots with Venusian surface material. Geochem. Int., 2005, vol. 43, no. 8, pp. 732--747.

[2] Limaye S.S., Kossin J.P., Rozoff C., et al. Vortex circulation on Venus: dynamical similarities with terrestrial hurricanes. Geophys. Res. Lett., 2009, vol. 36, no. 4, art. L04204. DOI: http://dx.doi.org/10.1029/2008GL036093

[3] Nikolaeva O.V. K-U-Th systematics of terrestrial magmatic rocks for planetary comparisons: Terrestrial N-MORBs and Venusian basaltic material. Geochem. Int., 1995, vol. 33, pp. 1--11.

[4] Nikolaeva O.V. K-U-Th systematics of igneous rocks for planetological comparisons: oceanic island-arc volcanics on Earth versus rocks on the surface of Venus. Geochem. Int., 1997, vol. 35, pp. 424--447.

[5] Phase II repot of the Venera-D joint science definition team.lpi.usra.edu: website. Available at: https://www.lpi.usra.edu/vexag/reports/VeneraDPhaseIIFinalReport.pdf (accessed: 31.01.2019).

[6] Report of the Venera-D joint science definition team. iki.rssi.ru: website. Available at: http://www.iki.rssi.ru/events/2017/venera_d.pdf (accessed: 20.01.2017).

[7] Vorontsov V.A., Karchaev Kh.Zh., Martynov M.B., et al. Venus exploration program and international cooperation. Trudy MAI, 2016, no. 86 (in Russ.). Available at: http://trudymai.ru/published.php?ID=65702

[8] Ghail R.C., Hall D., Mason P.J., et al. VenSAR on EnVision: taking Earth observation radar to Venus. Int. J. App. Earth Obs. Geoin., 2018, vol. 64, pp. 365--376. DOI: https://doi.org/10.1016/j.jag.2017.02.008

[9] Bullock M., Senske D.A., Balint T., et al. Venus flagship mission study: report of the Venus science and technology definition team. 7 p.

[10] Martha A., Gilmore S., Beauchamp P.M. Proposed Venus flagship mission. Abs. 10th Moscow Solar System Symp., 10MS3-VN-10, 2019, pp. 84--86.

[11] Ivanov M.A., Head J.W. Global geological map of Venus. Planet. Space Sc., 2011, vol. 59, no. 13, pp. 1559--1600. DOI: https://doi.org/10.1016/j.pss.2011.07.008

[12] Kosenkova A.V., Minenko V.E., Bykovskiy S.B., et al. Investigation of aerodynamic characteristics of lander alternative forms to study Venus. Inzhenernyy zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation], 2018, no. 11 (in Russ.). DOI: http://dx.doi.org/10.18698/2308-6033-2018-11-1826

[13] Kosenkova A.V. Investigation of the possibilities of aerodynamic forms of a lander capable of maneuverable descent in the Venus atmosphere. AIP Conf. Proc., 2019, vol. 2171, no. 1, art. 160005. DOI: https://doi.org/10.1063/1.5133309

[14] Bolotin V.A., Minenko V.E., Reshetin A.G., et al. Kosmicheskiy apparat dlya spuska v atmosfere planety i sposoby spuska kosmicheskogo apparata v atmosfere planet [Spacecraft for reentry in planet atmosphere and reentry methods for an spacecraft in planet atmosphere]. Patent RU 2083448. Appl. 05.08.1994, publ. 10.07.1997 (in Russ.).

[15] Minenko V.E., Agafonov D.N., Yakushev A.G., et al. Design, aerodynamic and thermoballistic analysis of reentry module of "lifting body" class. Nauka i obrazovanie: nauchnoe izdanie MGTU im. N.E. Baumana [Science and Education: Scientific Publication], 2015, no. 10 (in Russ.). DOI: https://doi.org/10.7463/1015.0815132

[16] Lemeshevskiy S.A., Grafodatskiy O.S., Karchaev Kh.Zh., et al. Spacecraft for Venus contact studies. Heritage and prospects (to the eightieth anniversary of Lavochkin Association and to the fiftieth anniversary of "VENERA-4" spacecraft). Vestnik NPO im. S.A. Lavochkina, 2017, no. 2, pp. 52--58 (in Russ.).

[17] Ostoslavskiy I.V., Strazheva I.V. Dinamika poleta. Traektorii letatel’nykh apparatov [Flight dynamics. Aircraft trajectories]. Moscow, Mashinostroenie Publ., 1969.

[18] Kamenkov E.F. Manevrirovanie spuskaemykh apparatov. Giperbolicheskie skorosti vkhoda v atmosferu [Reentry module manoeuvring. Hyperbolic velocities of entering the atmosphere]. Moscow, Mashinostroenie Publ., 1983.

[19] Sikharulidze Yu.G. Ballistika letatel’nykh apparatov [Aircraft ballistic]. Moscow, Nauka Publ., 1982.

[20] Moroz V.I., Zasova L.V. VIRA-2: a review of inputs for updating the Venus international reference atmosphere. ASR, 1997, vol. 19, no. 8, pp. 1191--1201. DOI: https://doi.org/10.1016/S0273-1177(97)00270-6

[21] Zasova L.V., Moroz V.I., Linkin V.M., et al. Structure of the Venusian atmosphere from surface up to 100 km. Kosmicheskie issledovaniya, 2006, vol. 44, no. 4, pp. 381--400 (in Russ.).

[22] Limaye S.S., Lebonnois S., Mahieux A., et al. The thermal structure of the Venus atmosphere: intercomparison of Venus Express and ground based observations of vertical temperature and density profiles. Icarus, 2017, vol. 294, pp. 124--155. DOI: https://doi.org/10.1016/j.icarus.2017.04.020