Investigation of the Ballistic Descent Mode for a Maneuverable Lander to the Venus Surface
Authors: Kosenkova A.V., Minenko V.E., Agafonov D.N. | Published: 11.08.2020 |
Published in issue: #4(133)/2020 | |
Category: Aviation and Rocket-Space Engineering | Chapter: Aircrafts Development, Design and Manufacture | |
Keywords: landing module, lifting body, descent trajectory, Venus, lateral manoeuvre |
At present, various projects to continue fundamental investigations of Venus are considered in Russia and abroad. It means that the issue of developing a landing module to reach the surface of the planet becomes topical, as the module might provide access to the regions most attractive in terms of research. We propose to use a landing module of the lifting body type, which, as compared to a ballistic class module, is not unacceptably complicated in terms of design and at the same time features a lift-to-drag ratio adequate for solving manoeuvring problems arising in the process of descent into the Venusian atmosphere to reach the target landing area. We consider potential descent trajectories available to a landing module of this type, including the possibility of performing a maximum lateral manoeuvre; we took into consideration its long-period trajectories characterised by multiple re-entries into the dense atmosphere and compared these trajectories to the descent trajectory of a conventional ballistic class landing module. We show that using a manoeuvrable craft expands the selection of potential landing regions, as well as reduces loads and broadens the scope of scientific problems to be solved and studies to be undertaken
References
[1] Abdrakhimov A.M. Geochemical comparison of volcanic rocks from terrestrial intraplate oceanic hot spots with Venusian surface material. Geochem. Int., 2005, vol. 43, no. 8, pp. 732--747.
[2] Limaye S.S., Kossin J.P., Rozoff C., et al. Vortex circulation on Venus: dynamical similarities with terrestrial hurricanes. Geophys. Res. Lett., 2009, vol. 36, no. 4, art. L04204. DOI: http://dx.doi.org/10.1029/2008GL036093
[3] Nikolaeva O.V. K-U-Th systematics of terrestrial magmatic rocks for planetary comparisons: Terrestrial N-MORBs and Venusian basaltic material. Geochem. Int., 1995, vol. 33, pp. 1--11.
[4] Nikolaeva O.V. K-U-Th systematics of igneous rocks for planetological comparisons: oceanic island-arc volcanics on Earth versus rocks on the surface of Venus. Geochem. Int., 1997, vol. 35, pp. 424--447.
[5] Phase II repot of the Venera-D joint science definition team.lpi.usra.edu: website. Available at: https://www.lpi.usra.edu/vexag/reports/VeneraDPhaseIIFinalReport.pdf (accessed: 31.01.2019).
[6] Report of the Venera-D joint science definition team. iki.rssi.ru: website. Available at: http://www.iki.rssi.ru/events/2017/venera_d.pdf (accessed: 20.01.2017).
[7] Vorontsov V.A., Karchaev Kh.Zh., Martynov M.B., et al. Venus exploration program and international cooperation. Trudy MAI, 2016, no. 86 (in Russ.). Available at: http://trudymai.ru/published.php?ID=65702
[8] Ghail R.C., Hall D., Mason P.J., et al. VenSAR on EnVision: taking Earth observation radar to Venus. Int. J. App. Earth Obs. Geoin., 2018, vol. 64, pp. 365--376. DOI: https://doi.org/10.1016/j.jag.2017.02.008
[9] Bullock M., Senske D.A., Balint T., et al. Venus flagship mission study: report of the Venus science and technology definition team. 7 p.
[10] Martha A., Gilmore S., Beauchamp P.M. Proposed Venus flagship mission. Abs. 10th Moscow Solar System Symp., 10MS3-VN-10, 2019, pp. 84--86.
[11] Ivanov M.A., Head J.W. Global geological map of Venus. Planet. Space Sc., 2011, vol. 59, no. 13, pp. 1559--1600. DOI: https://doi.org/10.1016/j.pss.2011.07.008
[12] Kosenkova A.V., Minenko V.E., Bykovskiy S.B., et al. Investigation of aerodynamic characteristics of lander alternative forms to study Venus. Inzhenernyy zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation], 2018, no. 11 (in Russ.). DOI: http://dx.doi.org/10.18698/2308-6033-2018-11-1826
[13] Kosenkova A.V. Investigation of the possibilities of aerodynamic forms of a lander capable of maneuverable descent in the Venus atmosphere. AIP Conf. Proc., 2019, vol. 2171, no. 1, art. 160005. DOI: https://doi.org/10.1063/1.5133309
[14] Bolotin V.A., Minenko V.E., Reshetin A.G., et al. Kosmicheskiy apparat dlya spuska v atmosfere planety i sposoby spuska kosmicheskogo apparata v atmosfere planet [Spacecraft for reentry in planet atmosphere and reentry methods for an spacecraft in planet atmosphere]. Patent RU 2083448. Appl. 05.08.1994, publ. 10.07.1997 (in Russ.).
[15] Minenko V.E., Agafonov D.N., Yakushev A.G., et al. Design, aerodynamic and thermoballistic analysis of reentry module of "lifting body" class. Nauka i obrazovanie: nauchnoe izdanie MGTU im. N.E. Baumana [Science and Education: Scientific Publication], 2015, no. 10 (in Russ.). DOI: https://doi.org/10.7463/1015.0815132
[16] Lemeshevskiy S.A., Grafodatskiy O.S., Karchaev Kh.Zh., et al. Spacecraft for Venus contact studies. Heritage and prospects (to the eightieth anniversary of Lavochkin Association and to the fiftieth anniversary of "VENERA-4" spacecraft). Vestnik NPO im. S.A. Lavochkina, 2017, no. 2, pp. 52--58 (in Russ.).
[17] Ostoslavskiy I.V., Strazheva I.V. Dinamika poleta. Traektorii letatel’nykh apparatov [Flight dynamics. Aircraft trajectories]. Moscow, Mashinostroenie Publ., 1969.
[18] Kamenkov E.F. Manevrirovanie spuskaemykh apparatov. Giperbolicheskie skorosti vkhoda v atmosferu [Reentry module manoeuvring. Hyperbolic velocities of entering the atmosphere]. Moscow, Mashinostroenie Publ., 1983.
[19] Sikharulidze Yu.G. Ballistika letatel’nykh apparatov [Aircraft ballistic]. Moscow, Nauka Publ., 1982.
[20] Moroz V.I., Zasova L.V. VIRA-2: a review of inputs for updating the Venus international reference atmosphere. ASR, 1997, vol. 19, no. 8, pp. 1191--1201. DOI: https://doi.org/10.1016/S0273-1177(97)00270-6
[21] Zasova L.V., Moroz V.I., Linkin V.M., et al. Structure of the Venusian atmosphere from surface up to 100 km. Kosmicheskie issledovaniya, 2006, vol. 44, no. 4, pp. 381--400 (in Russ.).
[22] Limaye S.S., Lebonnois S., Mahieux A., et al. The thermal structure of the Venus atmosphere: intercomparison of Venus Express and ground based observations of vertical temperature and density profiles. Icarus, 2017, vol. 294, pp. 124--155. DOI: https://doi.org/10.1016/j.icarus.2017.04.020