|

Features of Designing and Numerical Simulation of Flow Stabilizers in Actuator Line Synchronization Systems

Authors: Ivanov M.Yu., Novikov A.E., Resh G.F. Published: 12.04.2017
Published in issue: #2(113)/2017  

DOI: 10.18698/0236-3941-2017-2-54-65

 
Category: Aviation and Rocket-Space Engineering | Chapter: Aircrafts Development, Design and Manufacture  
Keywords: line synchronizing system, flow stabilizer, spool-and-sleeve, hydrodynamic force, mathematical modeling, universal testbed for flow stabilizer testing, static characteristic

In solving problems of actuator line synchronization in technical systems, hydraulic techniques are used. These methods involve the use of flow stabilizers maintaining the constant velocity of actuators, when exposed to various dynamic loads. The study examines the problems associated with the design, special features of designing and numerical simulation of the flow stabilizer, ensuring the setpoint of the volume flow rate of the working fluid over a wide differential pressure range, which is determined by the load spread to the actuators. The paper shows the results of computer simulation of physical processes in the flow stabilizer. We used mathematical models to experimentally determine the values of hydrodynamic force, affecting the flow accuracy. Finally, we obtained an analytical expression for the hydrodynamic force axial component coefficient and built a static flow stabilizer characteristic.

References

[1] Litvin-Sedoy M.Z. Gidravlicheskiy privod v sistemakh avtomatiki [Hydraulic drive in automation system]. Moscow, Mashgiz Publ., 1956. 312 p.

[2] Krassov I.M. Gidravlicheskie elementy v sistemakh upravleniya [Hydraulic elements in operating systems]. Moscow, Mashinostroenie Publ., 1967. 256 p.

[3] Bashta T.M. Mashinostroitel’naya gidravlika [Machine-building hydraulics]. Moscow, Mashinostroenie Publ., 1971. 672 p.

[4] Glikman B.F. Avtomaticheskoe regulirovanie zhidkostnykh raketnykh dvigateley [Automatic regulation of liquid rocket engines]. Moscow, Mashinostroenie, Publ., 1974. 396 p.

[5] Popov D.N. Mekhanika gidro- i pnevmoprivodov [Full hydraulic and pneumatic drive]. Moscow, Bauman MSTU Publ., 2002. 320 p.

[6] Kopkov G.A., Kuchin A.P., Novikov A.E., Ivanov M.Yu., Resh G.F., Antonov D.S. Stabilizatory raskhoda dlya sinkhronizatsii peremeshcheniya ispolnitel’nykh organov sistem letatel’nykh apparatov [Consumption stabilizer for movement synchronization of aircraft actuating devices systems]. Nauchno-tekhnicheskiy yubileynyy sbornik AO "KB khimavtomatiki" T.1 [Sci.-tech. jubilee issue of AO "KB khimavtomatiki". Vol. 1]. Voronezh, 20i2, pp. 219-223.

[7] Shevyakov A.A., Kalnin V.M., Naumenkova N.V., Dyatlov V.G. Teoriya avtomaticheskogo upravleniya raketnymi dvigatelyami [Automatic control theory of rocket engines]. Moscow, Mashinostroenie Pub., 1978. 288 p.

[8] Terekhov N.T. Sozdanie i sovershenstvovanie agregatov regulirovaniya [Q’aetion and refinement of regulator assemblies]. Nauchno-tekhnicheskiy yubileynyy sbornik AO "KB khimavtomatiki" [Sci.-tech. jubilee issue of AO "KB khimavtomatiki"]. Voronezh, 2001, pp. 397-409.

[9] Kashchuk A.S., Terekhov N.T. Regulyator raskhoda [Flow control regulator]. Patent 2142156 RF. Publ. 27.11.1999.

[10] Belyaev E.N., Chvanov V.K., Chervakov V.V. Matematicheskoe modelirovanie rabochego protsessa zhidkostnykh raketnykh dvigateley [Matematical simulation of liquid rocket engine working process]. Moscow, MAI Publ., 1999. 228 p.

[11] Lebedinskiy E.V., Mosolov S.V., Kalmykov G.P., Zenin E.S., Tararyshkin V.I., Fedotchev V.A. Komp’yuternye modeli zhidkostnykh raketnykh dvigateley [Computer models of liquid rocket engine]. Moscow, Mashinostroenie Publ., 2009. 376 p.

[12] Dergachev A.A., Ivanov M.Yu., Kopkov G.A., Kuchin A.P., Novikov A.E., Resh G.F., Sinyavin V.G. Regulyator raskhoda [Flow control regulator]. Patent 2548613 RF. Publ. 20.04.2015. 7 p.

[13] Gear C.W. Numerical initial value problems in ordinary differential equations. Englewood Cliffs, New Jersey, Prentice-Hall, Inc. 1971. 253 p.

[14] Puzanov A.V., Kholkin I.N. Raskhodno-perepadnye kharakteristiki zolotnikovykh raspredeliteley i kharakteristiki sil [Consumption-drop characteristics of control valves and characteristics of forces]. JSC SKB PA: company website. Available at: http://www.oao-skbpa.ru/pdf/2000%20GPA-25.pdf (accessed 30.07.2016).

[15] Salman M.I., Popov D.N. Computer study and calculation of hydrodynamic loads on the valve. Nauka i obrazovanie. MGTU im. N.E. Baumana [Science and Education: Scientific Publication of BMSTU], 2012, no. 10, pp. 79-92. DOI: 10.7463/1112.0491484 Available at: http://technomag.neicon.ru/en/doc/491484.html

[16] Salman M.I., Popov D.N. Balancing hydrodynamic forces by shaping valve’s surface. Nauka i obrazovanie. MGTU im. N.E. Baumana [Science and Education: Scientific Publication of BMSTU], 2012, no. 11, pp. 33-54. DOI: 10.7463/1112.0491497 Available at: http://technomag.neicon.ru/en/doc/491497.html