Feasibility Assessment of Thermally Stabilizing the Photodetector for Earth Remote Sensing with Thermoelectrical Cooler

Authors: Morozov A.S., Krotov A.S., Kas Published: 19.10.2016
Published in issue: #5(110)/2016  

DOI: 10.18698/0236-3941-2016-5-48-58

Category: Aviation and Rocket-Space Engineering | Chapter: Aircrafts Development, Design and Manufacture  
Keywords: photodetector, thermoelectrical cooler, passive thermal control system, cryogenic thermal storage unit, earth remote sensing

This paper estimates whether thermoelectrical cooler can be used as a component of thermal control system of infrared photodetector for earth remote sensing. The article offers a method to maintain thermal stability of the photodetector. The authors calculated coefficient of performance for thermoelectrical cooler and maximal temperature drop, and estimated its mass-dimensional parameters as applied to proposed method of thermal stability maintenance. The paper shows the analysis of a curve behavior of theoretical coefficient of performance for termoelectrical cooler under cryogenic temperatures.


[1] Formozov B.N. Aerokosmicheskiye fotopriyemnyye ustroystva v vidimom i infrakrasnom diapazonakh [Aerospace visual and infrared photodetectors]. St. Petersburg, SPbGUAP Publ., 2002. 120 p.

[2] Gilmore D.G. Spacecraft thermal control handbook. Vol. 2. Cryogenics. Reston, Va. American Institute of Aeronautics and Astronautics, 2003. 641 p.

[3] Bugby David С. Development of advanced cryogenic integration solutions, in Cryocoolers 10. R. Ross Jr., ed. Kluwer Academic/Plenum Publishers, N.Y., 1999, pp. 671-687.

[4] Karagusov V.I. Research of principles of on-board cryogenic refrigeration system construction based on gas cryogenic stirling machines for infrared viewing equipment. Sb. nauch.-tekh. statey po raketno-kosmicheskoy tekhnike [Collection of scientific and engineering articles on rocket and space technology]. Samara, SRPSRC TSSKB-Progress, 2001, pp. 72-84 (in Russ).

[5] Anatychuk L.I., Semenyuk V.A.. Optimal’noye upravleniye svoystvami termoelektricheskikh materialov i priborov [Optimal controlling the properties of thermoelectric materials and devices]. Chernovtsy, Prut Publ., 1992. 135 p.

[6] Bulat L.P., Vedernikov M.V., Vyalov A.P. Termoelektricheskoye okhlazhdeniye [Thermoelectric cooling]. St. Petersburg, SPbGUNiPT Publ., 2002. 147 p.

[7] Agaev Z.F., Abdinova G.D., Tagiev M.M. Thermoelectric power coefficient anisotropy of the extruded samples of Bi85Sb15 solid solution. Izv. nats. akad. nauk Azerbaydzhana. Ser. fiz.-tekh. i mat. nauk [Proceedings of the National Azerbaijan Academy of Science. Applied Physics and Mathematics Series], 2003, no.2, pp. 111-114 (in Russ.).

[8] Uryupin O.N. Termoelektricheskiye yavleniya v kristallakh sistemy vismut-sur’ma v shirokom intervale temperature. Avtoreferat diss. kand. fiz.-mat. nauk [Thermoelectric phenomena in crystals of bismuth-antimony system in a wide temperature range] Cand. phys.-math. sci. diss. abstr.]. St. Petersburg, Fiz.-tekh. inst., 1995. 17 p.

[9] Lal S., Loo S., Chung D.-Y., Kyratsi T., Kanatzidis M.G., Cauchy С., Hogan T.P. Thermoelectric module for low temperature applications. Mat. Res. Soc. Symp. Proc., 2002, vol. 691, pp. G6.2.1-G6.2.9.