Моделирование тепловых потоков, подводимых к поверхности выпуклых затупленных тел вращения в сверхзвуковом потоке газа
Авторы: Котенев В.П., Реш В.Г., Сысенко В.А. | Опубликовано: 08.07.2024 |
Опубликовано в выпуске: #2(149)/2024 | |
Раздел: Авиационная и ракетно-космическая техника | Рубрика: Аэродинамика и процессы теплообмена летательных аппаратов | |
Ключевые слова: тепловой поток, пограничный слой, осесимметричные течения газа, звуковая точка |
Аннотация
Приведены аналитические зависимости, позволяющие определить ламинарный относительный тепловой поток, подводимый к поверхности выпуклых затупленных тел вращения, обтекаемых сверхзвуковым потоком газа. Поскольку решение соответствующих уравнений Навье --- Стокса или пограничного слоя требует больших временных затрат, получение подобных зависимостей является важным инструментом для проведения предварительных оценок значимых параметров тепловых потоков. Существующие в настоящее время приближенные формулы получены в основном для сферических затуплений. При исследовании обтекания потоком газа эллипсоидов, параболоидов и других выпуклых поверхностей применяется правило "местных сфер", когда тепловой поток берется на теле таким же, как и на сфере при совпадении углов встречи потока с поверхностью рассматриваемого тела и сферы. Такой подход часто дает недопустимую для инженерных расчетов погрешность, поскольку формулы для сферы выведены на основе большого числа упрощений. Полученная зависимость не ограничивается сферической носовой частью затупленного тела вращения в случае холодной стенки и больших значений числа Рейнольдса. Путем сравнения с численными решениями показано, что полученная зависимость хорошо описывает относительный тепловой поток к стенке. Приведенные данные позволяют уже на ранних этапах проектирования оценивать критически важные для изделия значения тепловых потоков
Просьба ссылаться на эту статью следующим образом:
Котенев В.П., Реш В.Г., Сысенко В.А. Моделирование тепловых потоков, подводимых к поверхности выпуклых затупленных тел вращения в сверхзвуковом потоке газа. Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение, 2024, № 2 (149), c. 109--120. EDN: SPXFBV
Литература
[1] Димитриенко Ю.А., Коряков М.Н., Захаров А.А. Применение метода RKDG для численного решения трехмерных уравнений газовой динамики на неструктурированных сетках. Математическое моделирование и численные методы, 2015, № 4, с. 75--91.
[2] Berger K., Greene F., Kimmel R., et al. Aerothermodynamic testing and boundary-layer trip sizing of the HIFire flight 1 vehicle. JSR, 2009, vol. 46, no. 2, pp. 473--480. DOI: https://doi.org/10.2514/1.43927
[3] Toro E.F. Riemann solvers and numerical methods for fluid dynamics. Heidelberg, Springer, 2009.
[4] Землянский Б.А., ред. Конвективный теплообмен летательных аппаратов. М., ФИЗМАТЛИТ, 2014.
[5] Gross A., Fasel H.F. High-order-accurate numerical method for complex flows. AAIA J., 2008, vol. 46, no. 1, pp. 204--214. DOI: https://doi.org/10.2514/1.22742
[6] Горский В.В., ред. Математическое моделирование тепловых и газодинамических процессов при проектировании летательных аппаратов. М., Изд-во МГТУ им. Н.Э. Баумана, 2011.
[7] Белоцерковский О.М., Андрущенко В.А., Шевелев Ю.Д. Динамика пространственных вихревых течений в неоднородной атмосфере. М., Янус-К, 2000.
[8] Андерсон Д., Таннехилл Дж., Плетчер Р. Вычислительная гидромеханика и теплообмен. М., Мир, 1990.
[9] Ширахи С.А., Трумен К.Р. Сравнение алгебраических моделей турбулентности на примере расчета с помощью параболизованных уравнений Навье --- Стокса сверхзвукового обтекания конуса со сферическим носком. Аэрокосмическая техника, 1990, № 10, с. 69--81.
[10] Горский В.В., Локтионова А.Г. Теплообмен и трение в тонком воздушном ламинарном пограничном слое над поверхностью полусферы. Вестник МГТУ им. Н.Э. Баумана. Сер. Машиностроение, 2020, № 2(131), с. 17--33. DOI: http://dx.doi.org/10.18698/0236-3941-2020-2-17-33
[11] Покровский А.Н., Фролов Л.Г. Приближенные зависимости для определения давления на поверхности сферы или цилиндра при произвольном числе Маха набегающего потока. Изв. АН СССР, Механика жидкости и газа, 1985, № 2, с. 185--188.
[12] Котенев В.П. Точная зависимость для определения давления на сфере при произвольном числе Маха сверхзвукового набегающего потока. Математическое моделирование, 2014, т. 26, № 9, с. 141--148. EDN: TFRUWV
[13] Горский В.В., Локтионова А.Г. Моделирование теплообмена и трения в тонком воздушном ламинарно-турбулентном пограничном слое над поверхностью полусферы. Математическое моделирование и численные методы, 2019, № 2, с. 51--67. EDN: UEEDIW
[14] Котенев В.П., Сысенко В.А. Моделирование теплообмена на поверхности сферы в потоке газа. Математическое моделирование и численные методы, 2023, № 2, с. 90--99. EDN: HWBWIL