Local Form of Loss of Stability of Honeycomb Energy Absorber Plates
Авторы: Uvarov A.I. | Опубликовано: 25.06.2021 |
Опубликовано в выпуске: #2(137)/2021 | |
Раздел: Авиационная и ракетно-космическая техника | Рубрика: Динамика, баллистика, управление движением летательных аппаратов | |
Ключевые слова: motion energy absorption, honeycomb material, compressed plate stability |
Landing devices perform the energy absorption function during the spacecraft motion. Precise analytical solution to the problem of stability of a lengthy plate with free edge exposed to the edge compressive load was obtained in order to analyze operation of the honeycomb materials used in structural elements absorbing the moving bodies energy. General solution analysis of the differential equation for a lengthy plate bending in the deflected position was carried out, and general solution is subjected to the boundary conditions corresponding to the loaded free edge. Critical load value and form of the loss of stability were determined. Critical load identified value was significantly lower than the critical load for a plate supported on the loaded edge. The loss of stability identified form was characterized by sharp deflection localization near the loaded edge and could create conditions for forming a local fold near the loaded edge. Obtained analytical solution was verified by comparing it with results of the similar numerical solution. Comparison performed revealed satisfactory agreement both in the critical load value and in the form of loss of stability for two solutions obtained by different methods. The results obtained could be used in designing energy absorbers made of honeycomb materials, as well as in other areas of technology
Литература
[1] Markov V.A., Pusev V.I., Selivanov V.V. Issues of damping and absorbing properties of materials and structures. Nauka i obrazovanie: nauchnoe izdanie MGTU im. N.E. Baumana [Science and Education: Scientific Publication], 2012, no. 6 (in Russ.). DOI: https://dx.doi.org/10.7463/0612.0442023
[2] Asadi M., Walker B., Shirvani H. An investigation to compare the application of shell and solid element honeycomb model in ODB. 7th Europ. LS-DYNA Conf., 2009. Available at: https://www.dynalook.com/conferences/european-conf-2009/B-V-01.pdf
[3] Efremov A.K. Systems for the shock isolation of engineering objects. Nauka i obrazovanie: nauchnoe izdanie MGTU im. N.E. Baumana [Science and Education: Scientific Publication], 2015, no. 11, pp. 344--369 (in Russ.). DOI: https://dx.doi.org/10.7463/1115.0817507
[4] Petrov Yu.A., Makarov V.P., Kolobov A.Yu., et al. Spacecrafts landing devices on the basis of polyfoams and cellular designs. Nauka i obrazovanie: nauchnoe izdanie MGTUim. N.E. Baumana [Science and Education: Scientific Publication], 2010, no. 4 (in Russ.). Available at: http://technomag.edu.ru/doc/141542.html
[5] Hexweb honeycomb energy absorption brochure. ru.scribd.com: website. Available at: https://ru.scribd.com/document/327378753/Hex-Web-Honeycomb-Energy-Absorption-Brochure (accessed: 15.12.2020).
[6] Kelly T.J. Moon lander. Smithsonian Institution Press, 2001.
[7] Vol’mir A.S. Ustoychivost’ uprugikh system [Stability of elastic systems]. Moscow, FIZMATGIZ Publ., 1963.
[8] Postnov V.A., Rostovtsev D.M., Suslov V.P., et al. Stroitel’naya mekhanika korablyai teoriya uprugosti. T. 2. Izgib i ustoychivost’ sterzhney, sterzhnevykh sistem, plastin i obolochek [Ship building mechanics and elasticity theory. Vol. 2. Bend and stability of rods, rod systems, plates and shells]. Leningrad, Sudostroenie Publ., 1987.
[9] Timoshenko S., Woinowsky-Krieger S. Theory of elastic stability. McGraw-Hill, 1936.
[10] Alfutov N.A. Osnovy rascheta na ustoychivost’ uprugikh system [Stability calculation fundamentals of elastic systems]. Moscow, Mashinostroenie Publ., 1978.
[11] Solomenko N.S., Abramyan K.G., Sorokin V.V. Prochnost’ i ustoychivost’ plastin i obolochek sudovogo korpusa [Strength and stability of ship hull plates and shells]. Leningrad, Sudostroenie Publ., 1967.
[12] Paliy O.M., Chuvikovskiy V.S., eds. Spravochnik po stroitel’noy mekhanike korablya. T. 3. Dinamika i ustoychivost’ korpusnykh konstruktsiy [Handbook on ship structural mechanics. Vol. 3. Dynamics and stability of hull construction]. Leningrad, Sudostroenie Publ., 1982.
[13] Birger I.A., Panovko Ya.G. Prochnost’, ustoychivost’, kolebaniya. T. 3 [Strength, stability, oscillations. Vol. 3]. Moscow, Mashinostroenie Publ., 1988.
[14] Favre B. Crushing properties of hexagonal adhesively bonded honeycombs loaded in their tubular direction. Georgia Institute of Technology, 2007.
[15] Smirnov V.I. Kurs vysshey matematiki. T. 1, 2 [Course of higher mathematics. Vol. 1, 2]. St. Petersburg, BKhV-Peterburg Publ., 2008.
[16] Timoshenko S., Woinowsky-Krieger S. Theory of plates and shells. McGraw-Hill, 1959.