Analysis of the Orbital Approach Dynamics of the Space Debris Collector to the Fragment of Debris by the Method of Thrust Reversal with Interruption
Авторы: Arinchev S.V. | Опубликовано: 30.04.2020 |
Опубликовано в выпуске: #2(131)/2020 | |
Раздел: Авиационная и ракетно-космическая техника | Рубрика: Динамика, баллистика, управление движением летательных аппаратов | |
Ключевые слова: space debris collector, debris fragment, orbital approach, thrust reversal |
The debris collector and a debris fragment move along random noncoplanar orbits in the altitude range of 400--2000 km. The thrust of the promising engine is 5000--25 000 N, the specific impulse of the promising fuel is not lower than 20 000 m/s. The remaining fuel after approach is not less than the specified. The debris collector undocks from the base station, transfers from its orbital plane to the debris fragment orbital plane, performs phasing, approaches the fragment, grabs it and returns to the base station. The paper considers only the stage of orbital approach. The duration of the entire flight mission is limited to one day. The phasing time is insufficient, therefore, at the start time of the orbital approach, the distance to the target is ~ 100 km, the relative velocity is ~ 1 km/s. On the other hand, for reliable and safe grabbing of a debris fragment, it is necessary to provide a distance of ~ 1 m and a relative velocity of ~ 1 m/s. It is shown that this can be achieved by approach using the method of thrust reversal with interruption. An effective algorithm of approach with target is proposed. An analysis of the orbital approach dynamics was performed by joint numerical integration of the orbital motion equations of the debris collector and the debris fragment by the 4th-order Runge --- Kutta method. Approach is performed in 6 cycles. In each cycle, the engine turns on three times. Two cycles are performed by sustainer engines, four cycles are performed by auxiliary engines of lower thrust. The fuel depletion and the non-sphericity of the Earth's gravitational field according to the 2nd zonal harmonic are taken into account. Calculation example is considered. Convergence estimates of the integration procedure by the resultant distance to the target and the resultant relative velocity are given. Resultant orbital approach is oscillation process with heavy damping. Damping is ensured by multiple firings of the sustainer (auxiliary) engine
Литература
[1] Somov E.I., Butyrin S.A., Somov S.E. Control of a space robot-manipulator at rendezvous and mechanical capturing a passive satellite. Izvestiya Samarskogo nauchnogo tsentra RAN [Izvestia RAS SamSC], 2018, vol. 20, no. 6, pp. 202--209 (in Russ.).
[2] Degtyarev G.L., Starostin B.A., Fayzutdinov R.N. [Trajectory planning methods and algorithms for space debris removal]. Analiticheskaya mekhanika, ustoychivost’ i upravlenie. Trudy XI Mezhdunar. Chetaevskoy konf. [Analytical mechanics, stability and control. Proc. XI Int. Chetaev Conf.]. Kazan, KGTU im. A.N. Tupoleva Publ., 2017, pp. 199--208 (in Russ.).
[3] Kudritskaya K.A., Chesnokov Yu.A., Bobkov A.V. [Problems of developing reusable interceptor spacecraft]. Nauchno-tekhnicheskoe tvorchestvo aspirantov i studentov. Mat. 47-y nauch.-tekh. konf. aspirantov i studentov [Science and technology creative work of postgraduates and students. Proc. 47th Sc.-Tech. Conf. of Postgraduates and Students]. Komsomol’sk-na-Amure, KnAGTU Publ., 2017, pp. 603--605 (in Russ.).
[4] Gu L., Shen Y., Yuan L. Three-dimensional guidance model and guidance law design for head-pursuit interception. Systems Engineering and Electronics, 2008.Available at: http://en.cnki.com.cn/Article_en/CJFDTOTAL-XTYD200806027.htm (accessed: 15.10.2019).
[5] Chatterji G.B., Pachter M. An integrated approach for homing guidance of space-based interceptors. ACC, 1990. DOI: https://doi.org/10.23919/ACC.1990.4791241
[6] Zelentsov V.V., Shcheglov G.A. Konstruktivno-komponovochnye skhemy razgonnykh blokov [Design-layout schemes of upper-stage rocket]. Moscow, BMSTU Publ., 2018.
[7] Lupyak D.S., Radugin I.S. The mass-energy capabilities of the orbital transfer vehicles based on the liquid rocket engines. Izvestiya RAN. Energetika [Proceedings of the Russian Academy of Sciences. Power Engineering], 2017, no. 4, pp. 116--128 (in Russ.).
[8] Lupyak D.S., Lakeev V.N., Karabanov N.A. The block DM-based orbital transfer vehicle. Vestnik NPO im. S.A. Lavochkina, 2012, no. 3, pp. 61--68 (in Russ.).
[9] Kluever C.A. Optimal geostationary orbit transfers using onboard chemical-electric propulsion. J. Spacecr. Rockets, 2012, vol. 49, no. 6, pp. 1174--1182. DOI: https://doi.org/10.2514/1.A32213
[10] Khramov A.A. Analiz i optimizatsiya pereletov kosmicheskikh apparatov mezhdu nizkimi okolozemnymi orbitami s dvigatel’nymi ustanovkami s nakopleniem energii. Avtoref. dis. kand. tekh. nauk [Analysis and optimization of spacecraft flight with energy-storage engine system between low-earth orbits. Abs. Cand. Sc. (Eng.) Diss.]. Samara, SGAU im. S.P. Koroleva Publ., 2016.
[11] Graham K.F., Rao A.V. Minimum-time trajectory optimization of multiple revolution low-thrust Earth-orbit transfers. J. Spacecr. Rockets, 2015, vol. 52, no. 3, pp. 711--727. DOI: https://doi.org/10.2514/1.A33187
[12] Latyshev K.A., Sel’tsov A.I. Engineering approach to calculation of noncomplanar low-thrust transfers of spacecraft from the low Earth orbit into the geostationary orbit. Vestnik NPO im. S.A. Lavochkina, 2013, no. 1, pp. 29--33 (in Russ.).
[13] Petukhov V.G. Optimizatsiya traektoriy kosmicheskikh apparatov s elektroraketnymi dvigatel’nymi ustanovkami metodom prodolzheniya. Avtoref. dis. d-ra tekh. nauk [ Trajectory optimization of spacecraft with electric propulsion system using continuation method. Abs. Dr. Sc. (Eng.). Diss.]. Moscow, MAI Publ., 2013.
[14] Salmin V.V., Chetverikov A.S. Selection of control laws for trajectory and angular motion of spacecraft with a nuclear electric propulsion engine during non-coplanar interorbital flights. Izvestiya Samarskogo nauchnogo tsentra RAN [Izvestia RAS SamSC], 2013, no. 6, pp. 242--254 (in Russ.).
[15] Balakhontsev V.G., Ivanov V.A., Shabanov V.I. Sblizhenie v kosmose [Space meeting]. Moscow, Voenizdat MO SSSR Publ., 1973.
[16] Avksent’yev A.A. Control over spacecraft center of mass movement during soft rendezvous with orbital object at the short-range guidance segment. Izvestiya vysshiy uchebnykh zavedeniy. Priborostroenie [Journal of Instrument Engineering], 2016, vol. 59, no. 5, pp. 364--369 (in Russ.).DOI: https://doi.org/10.17586/0021-3454-2016-59-5-364-369
[17] Afonin V.V., Nezdyur L.A., Nezdyur E.L., et al. Sposob avtomaticheskogo upravleniya prichalivaniem [Method for automatic control on approach]. Patent 2225812 RF. Appl. 30.05.2002, publ. 20.03.2004 (in Russ.).
[18] Mironov V.I., Mironov Yu.V., Burmistrov V.V., et al. Applying van Herrick method for calculation of approach control program of spacecraft with finite burn in Earth neutral gravitation field. Trudy Voenno-Kosmicheskoy Akademii im. A.F. Mozhayskogo [Proceedings of the Mozhaisky Military Space Academy], 2014, no. 645, pp. 171--176 (in Russ.).
[19] Mironov V.I., Mironov Yu.V., Makarov M.M. Euler’s --- Lambert’s method application to the proximity control calculation program for space crafts in the non-central gravitational field of Earth. Voprosy elektromekhaniki. Trudy VNIIEM [Electromechanical Matters. VNIIEM Studies], 2015, vol. 144, no. 1, pp. 29--35 (in Russ.).
[20] Krylov V.I. Osnovy teorii dvizheniya ISZ. Ch. 2. Vozmushchennoe dvizhenie [Fundamentals of motion theory. P. 2. Disturbed motion]. Moscow, MIIGAiK Publ., 2016.
[21] Bordovitsyna T.V., Avdyushev V.A. Teoriya dvizheniya iskusstvennykh sputnikov Zemli. Analiticheskie i chislennye metody [Motion theory of artificial Earth satellites. Analytical and numerical methods]. Tomsk, TSU Publ., 2007.
[22] Bordovitsyna T.V., Aleksandrova A.G., Chuvashov I.N. Numerical simulation of near Earth artificial space object dynamics using parallel computation. Vestnik Tomskogo Gosudarstvennogo Universiteta. Matematika i mekhanika [Tomsk State University Journal of Mathematics and Mechanics], 2011, no. 4, pp. 34--48 (in Russ.).
[23] Avdyushev V.A. Effektivnye metody chislennogo modelirovaniya okoloplanetnoy orbital’noy dinamiki. Avtoref. dis. d-ra tekh. nauk [Effective methods of numerical modelling circumplanetary orbit dynamics. Ans. Dr. (Eng.). Sc. Diss.]. St. Petersburg, SPbGU Publ., 2009.
[24] Lapidus L., Seinfeld J.H. Numerical solution of ordinary differential equations. New York, London, Academic Press, 1971.